Operations Manual

Operation

BASIC Programming

Advanced Programming

Communications

Technical Data

CONTENTS

HUSKY OPERATIONS MANUAL

CONTENTS

PART 1 INTRODUCTION

PART 2 HUSKY OPERATION

PART 3 HUSKY BASIC PROGRAMMING

PART 4 HUSKY ADVANCED PROGRAMMING
PART 5 HUSKY COMMUNICATIONS

PART 6 TECHNICAL DATA & ACCESSORIES

HUSKY COMPUTERS LIMITED
P O BOX 135

345 FOLESHILL ROAD
COVENTRY, WEST MIDLANDS
ENGLAND CV6 S5RW

1.1

1.2

HUSKY OPERATIONS MANUAL — INTRODUCTION SECTION 1.1

USING THE MANUAL

INTRODUCTION
PLEASE READ THIS SECTTON

Pu.
This manual is intended to fulfil several functions:

1) As an introduction to the programming, operation and use of
HUSKY.

2) As a source of reference for technical data about HUSKY.

3) As the vehicle for achieving HUSKY's full potential in
diverse user applications.

It is not intended as a guide to first time computer or
Basic users. For guidance on these subjects, the reader is
referred to the many excellent introductory works dealing with
Microcomputer Basic, now commonly available.

How to Use This Manual
The manual is split into a number of parts. Part 1 is this
introduction. The others are :

2) Operation:
How to operate HUSKY. The location and use of its screen,
keyboard and power supplies.

3) BASIC Programming
A full exposition of HUSKY's resident BASIC interpreter,
including programming data, performance details and sample
programs.

A comprehensive index to BASIC functions is provided in this
section. Start here if your interest is in Basic compatability.

4) Advanced Programming:
Data specific to HUSKY including details of HUSKY's
architecture and housekeeping programs. Details of CP/M
compatability. Interfacing for direct data acquisition.

5) Communication:
A full description of HUSKY's very flexible serial data
communcation facilities.

6) Technical Data & Accessories:
Information on maintenance and installation of HUSKY.
: Technical Specification : Details of Accessories.

Each Part has an index page, detailing subsections, immediately
following the coloured divider.

REV.HC10APR PAGE 1

1.3

HUSKY OPERATIONS MANUAL — INTRODUCTION : SECTION 1.3

Page Format

Every page in this Manual is laid out on a standard format.
Sections are identified in the left Margin by section numbers,
e.g. 1.3, meaning Part 1 (Intoduction), Section 3.

At top left of the page is a reminder of which part is being
studied, i.e. "Husky Operations Manual Introduction".

At top right, in bold type, is the subject of this page. (Not
all pages have this bold type). On this page it is "PAGE
FORMAT". '

Just above this is the number of the first section on the page,
e.g. "Section 1.3"

At bottom left is the revision of Husky Operating system to
which this Manual relates. Every effort is made to keep Husky
versions "upward compatible", but sometimes, very rarely,
features in the operating systems undergo slight changes for
improved performance or compatibilty reasons.

The version of Operating system in your Husky can be found by
typing "VER" (Section 3.3.2.31).

At bottom right is the page number of this page, referenced to
the start of this-part. New material is sometimes inserted into
the page sequence, and is then labelled with page number
followed by suffixes -1, -2, -3 etc.

REV.HC10APR PAGE 2

OPERATION

PART 2

2.1
2.2
2.3
2.4

2.5

HUSKY OPERATION

INTRODUCTION TO HUSKY
OWNER'S INFORMATION
BATTERIES, POWER WARNING
COMMUNICATION

SETTING THE CLOCK

2.1

HUSKY OPERATION SECTION 2.1

WELCOME

Welcome to HUSKY!

HUSKY is probably the friendliest computer you've yet seen. It's
small, light very powerful and totally dependable.

This is the first true computer you can take almost anywhere,
use almost anywhere and program yourself. It's resistent to
moisture, dust, vibration, shock and electro—magnetic inter—
ference. But please don't abuse it. Inside the impervious cast
aluminium case is some of the most advanced technology money can
buy. Don't drop HUSKY needlessly, use it to strike other
objects or pile heavy things on top of it.

If you can't find the information you need in this manual or
have problems with HUSKY, please call us. We've done all we can
to make HUSKY a practical and utilitarian tool, not a
frustrating incumbrance. We hope you agree. After all, HUSKY
is our baby.

The HUSKY team.

HUSKY COMPUTERS LIMITED
PO BOX 135

345 POLESHILL ROAD
QOVENTRY, CV6 S5RW
ENGLAND

TEL: (0203) 668181

TELEX: 317450 HUSKY G

PAGE 1

2.2

2.2.1

HUSKY OPERATION SECTION 2.2

Layout of BUSKY
Measuring 24.1 x 20.3 x 4.4cm (9.5" x 8" x 1.75") and weighing
about 2 Kg. (4.4 1bs), HUSKY is a completely self contained
computer system.

FIG 2.1 HUSKY LAYOUT

COMMUNICATIONS PORT POWER KEY

7% 2

128 CHARACTER SCREEN 40-KEY KEYBOARD
HUSKY is completely sealed against moisture, dust and other
hazards. NEVER ATTEMPT TO OPEN THE CASE.

There are no user-serviceable parts inside.

When handed over to you, HUSKY is likely to be already
programmed for the task you have in mind. This programming will
cause HUSKY to ask questions, supply data and otherwise assist
you. =

There is likely to be a specific manual for the applications
program loaded in your HUSKY, to which you refer. Once loaded,

PAGE 2

2.2.2

HUSKY OPERATION SECTION 2.2

SCREEN

applications programs remain installed in HUSKY until the unit
is required for another purpose.

HUSKY Screen

HUSKY has one of the largest LCD (Licuid Crystal Displey)
screens yet developed. It can present up to 128 characters on 4
lines of 32 characters each, just like a small vigeo termiral.

FIG.2.2

The character set includes upper and lower case alphabets.
Additionally, special characters and graphic symbols are used in
specific applications.

The HUSKY display is designed for use in bright sunlight where
other displays (the red 'LED' or green 'vacuum flourescent', for
example) become invisible.

Because it works by contrast, rather than emitting its own
light, it is perfectly visible no matter how bright the 1ight
is. But a word of caution: try to avoid leaving HUSKY exposed
to direct sunlight for prolonged periods - the delicate
chemicals in the I(D can be damaged.

The 'Cursor' shows where data entered on the keyboard will
appear: The 'shift arrow' shows whether the key entries are
shifted or not.

The screen is protected by a polycarbonate window, as strong as
glass. Like glass, it can be scratched, so please take care.
The window should only be cleaned with chamois or lens cleaning
cloth.

HUSKY is built to last - please take care of it.

PAGE 3

2.2.3

2.2.3.1

2.2.3.2

HUSKY OPERATION SECTION 2.2

KEYBOARD |

" HUSKY Keyboard

HUSKY's keyboard has 40 keys, laid out in a typewriter style
'QWERTY' format.

HUSKY's keyboard looks like this:
(you may see other versions, too. This is the standard layout)

FIG.2.3

Power
On/0Off

Help Shift Enter

NOTICE THAT HUSKY'S KEYS REPEAT AUTOMATICALLY WHEN YOU HOLD THEM
DOWN.

There are four keys you should get to know straight away.

POWER ON/OFF
Press once to turn HUSKY on : again to turn off. Press firmly
and hold the key down until HUSKY responds.

SHIFT

Press the 'Shift' key and watch the 'Shift Arrow' in the bottom
right-hand corner of the screen. A means shift 'UP', while
means shift 'DOWN'. There are two types of shift key in HUSKY:

'Momentary Shift' (for two handed use) and 'Latched Shift' (for
use with one hand only).

Momentary shift works just like a typewriter shift key, while
with latched shift each time you press 'Shift', the arrow will

PAGE 4

2.2.3.3

2.2.3.4

2:2.3:5

HUSKY OPERATION SECTION 2.2

change, remaining where it is until you shift again.

'shift' never affects the operation of HUSKY : you can change
'Shift’ whenever you like.

ENTER

The 'Enter' key accepts entries from the keyboard and terminates
lines. If HUSKY asks for a keyboard entry, always terminate
your message with 'Enter'.

HELP

Whatever you are doing, 'Help' is always available. Pressing
'Help' doesn't destroy your program or affect entries you are
making. 'Help' will display pages of instruction relevant to
the operation you are carrying out: you can scan through 'Help'
text using the cursor keys.

To leave 'Help', press 'Enter'. The screen will return to
wherever you were before, unchanged. Note that 'Help' is a
'shifted' key : you will probably need to press shift first.

Having mastered 'Power', 'Help', 'Enter' and 'Shift', you will

need to know about a second group of keys. These are:

FIG.2.4

o
A

0 =6 i

L

CONTROL CURSOR DELETE

Most important are the 'Cursor' keys, « _ __5 1 . These
move the cursor (see the display section 2.2) in the direction
of the arrows. They have two main uses:

Menu selection : a 'menu' is a range of choices presented by
HUSKY for selection by the user. The choices are selected by
pressing cursor keys until the desired option appears. The
option is then confirmed by pressing the 'ENTER' key.

Text scrolling : use the cursor keys to step sequentially
through lines of text, as in "HELP'. Remember that 4/ moves the

PAGE 5

2.2.3.6

2.2.3.7

2.2.3.8

HUSKY OPERATION <. ... - SECTION 2.2

cursor DOWN to the NEXT line, i.e. the text moves UP the screen,
Vv moves BACK one line, the text scrolling DOWN the screen.

NOTE: Many industry standard programs, like HUSKY's BASIC, don't
recognise the cursor keys and can be confused by them. Use
'Delete' and 'Enter' instead.

The cursor keys never affect a program directly.

DELETE

'Delete’ is used with line-by-line programs like BASIC, and is
the equivalent of . . Pressing Delete steps the cursor back

one character and erases it, ready for a new character to be
entered.

You can erase a whole line, if you want. When you get to the
begining of the line, 'Delete' will give a warning tone to tell
you.

CONTROL
Only one key on HUSKY does not return a confirmation tone when
pressed : 'Control'. 'Control' is a shifted key.

You can enter control characters by first pressing 'Control’,
and then the appropriate key without releasing 'Control'. Try
control = G (Bell). Press and hold 'Control', then 'G'. HUSKY
will give a long bleep.

As the conrol function is on upper shift of the standard Husky
keyboard, to obtain control codes from the HUSKY keyboard, three
simultaneous key operations would normally be required. The
shift key, the control key and the key for which the code is
required.

In order to simplify the number of key operations to two, the
following procedure should be followed:

Example to obtain Control A

Operate the shift key and then select the control key
simultaneously. Once the control key has been operated the
shift key can be released as the control function has been
latched, provided the control key remains operated. The key 'A'
can then be pressed to generate the conrol A code.

ESC .

'Escape’ is an upper-shifted key used by industry standard
programs to.terminate execution. It is only available when
running certain programs, and otherwise has no effect.

PAGE 6

2.2.4

2.2,5

HUSKY OPERATION SECTION 2.2

PHYSICAL .
HUSKY's keyboard is built for extended use and long life. The
contact elements (deformable metal discs that 'click' when
operated) are protected by several membranes, including an outer
polycarbonate overlay that is colour printed with the keyboard
lettering and can be replaced if needed. The keyboard will
withstand water, coffee and other assaults; but it can be
damaged by direct impact or sharp objects like nails.

DON'T USE POINTED OBJECTS TO OPERATE THE KEYS

THE BELL

HUSKY has an audio transducer that produces a loud tone or a
sharp click when keys are operated, or when required by a user
program.

The sound level is maximised for use outdoors: indoors, it can
be a nuisance. To suppress the bell, type control 'Delete' (See
2.2.3.6). This will suppress further sounds.

PAGE 7

2.3

HUSKY OPERATION SECTION 2.3

BATTERIES

HUSKY is battery powered. It runs, for a long time, on standard
'C' size cells you can buy anywhere.

HUSKY has two separate batteries:

FI1G.2.5

The MAIN Battery The LEMO The STAND-BY
(charger) socket Battery

The MAIN battery is made up of four 'C' cells.

The STAND-BY battery is a singlé mercury cell.

PAGE 8

2.3.1

2.3.2
2.3.2.1

2.3.2.2

2.3.2.3

HUSKY OPERATION SECTION 2.3

BATTERY INSTALIATION
Both battery holders are spring-loaded to ensure reliable
contact. The batteries are retained by threaded plugs.

When installing batteries, follow this procedure:-

1 ONLY USE A COIN in the battery plug. Screwdrivers,
etc., will damage the slot and HUSKY's appearance.

2 Insert the cells, positive terminal inwards. Don't
drop the 'C' cells in vertically : they can be
damaged. Instead, tilt HUSKY slightly.

3 Take the battery plug, and with finger pressure
only, press into the battery compartment and turn.

4 Only when the thread is started, use a coin to
screw the plug home.

The MAIN BATTERY plug should be flush with the case wall.
The STAND-BY battery plug stands proud by about 2mm.
NOTE:

Clockwise: inserts the plug

Anti—clockwise: removes the plug
BATTERY TYPE
Main Battery — Primary Cells
We strongly recommend the use of Alkaline-Manganese batteries
similar to Mallory MN1400 or Ever Ready (Berec) MN1400LR14.
We do not recommend the use of cheaper zinc-carbon cells for
routine operation, since these can suffer electrolyte leakage,
have shorter lives and can introduce technical problems.
Main Battery — Rechargeable Cells
Only Nickel-Cadmium (Ni-Cd) cells are to be used. Under no
circumstances must any other type of rechargeable cell be

installed. We recommend Berec type NCC200 cells of 2000 mAH
capacity.

Stand-by Battery

Use only a single Mallory mercury cell type PX23. It is
recommended that this cell is replaced annually.

PAGE 9

HUSKY OPERATION = SECTION 2.3

FIG.2.6
MATIN BATTERY
Threaded Plug
///// S W Coin Slot
'IC' size Cell
NOTE POLARITY
(+ Positive) (- Negative)

Both batteries are secured by screw-in plugs and 'O' ring seals.

STAND-BY BATTERY

Threaded Plug

@,

i

Coin Slot
Mercury Cell

NOTE POLARITY
(+ Positive) (- Negative)

PAGE 10

2.3.3

2.3.4

HUSKY OPERATION SECTION 2.3

Alkaline cells will give 30 - 50 hours of HUSKY use, and almost
very long storage life. There is no need to remove cells from
HUSKY during storage or shipment but remember that capacity will
reduce steadily with time.

LOW BATTERY WARNING

When HUSKY's batteries are nearly exhausted, a power warning
message will appear on the screen. Normal operation will
continue, but keyboard entries will be punctuated by warning
tones and repetition of the power warning message until the
battery state is rectified either by replacement of primary
cells or recharging of secondary cells, if installed.

Eventually, if the warnings are ignored, the HUSKY will shut
down and refuse to operate further.

The warning message appears on the top line of the screen and
looks like this:

WARNING — BATTERIES ARE LOW

If batteries become exhausted whilst communications are in
progress, then normal power warning messages will appear once
the keyboard operation is resumed.

NOTE: Power warning messages only occur when keyboard entries
are in progress.

BATTERY CHARGING

HUSKY is optionally available with rechargebale cells and a
mains (line) powered charger. This arrangement allows cells to
be recharged in the HUSKY and for alkaline cells to be quickly
substituted if the user forgets to recharge!l

But BE CAREFUL - NEVER connect the charger when alkaline
batteries are installed. They will NOT re-charge, instead, they
may explode, jam in the battery tube or leak corrosive
chemicals.

HUSKY's charger is in the form of a moulded plug-top and
incorporates an integral double insulated transformer for
safety. The charger connects to HUSKY via the LEMO connector
and simply plugs into a suitable electrical outlet. Chargers
are available in different forms to suite national variations -
be sure that the charger supplied with your HUSKY is suitable
for the voltage and standards at your location.

The recommended 2000mAH Nickel-Cadmium cells cannot be over-—

charged. The cells will fully re-charge in about 12 hours if
the HUSKY is not in use.

PAGE 11

HUSKY OPERATION SECTION 2.3

2,3.5 CONTINUOUS CONNECTION
The HUSKY can be powered permanently from the charger by simply
leaving the unit connected. 1In this mode, the rechargeable
cells will be kept 'topped up' by the charger despite the
continuous current drain. Of course, a fully discharged battery
will take longer to recharge than if the HUSKY is powered down.

2.4

HUSKY OPERATION SECTION 2.4

COMMUNICATION

HUSKY has an industry-standard RS-232/V24 serial communications
port, and will talk directly to most computer peripherals,
modems and other devices.

FIG 2.8

1 2 3 4 5 6 7 8 9 10 n 12 13
) - - 2 3 9 3 9 F) Fl F M))
9 9 v) - - - < l v v -

4 15 16 7 18 9 20 21 22 23 24 25

THE SERIAL PORT
The port communicates via a standard male 25-way 'D' type
cnnector. The pin connections and other date are detailed in
Part 5 '"COMMUNICATIONS'.

NOTE: Never, never try to force a mating connector home. Check
that the connector is the right way up (like this):

FIG 2.9

and is a female type

If the connector won't fit easily, it probably won't fit at all
FIND OUT WHY!

PAGE 13

HUSKY OPERATION g SECTION 2.4

HUSKY's communication format is usually set up by its
applications program for specific situations, and does not
require operator attention.

Sometimes, a user program will present a 'menu' selection for
user choice. In this event, selection of the desired
communications mode will automatically set the communications
parameters without further action.

Programming the user applications program in this fashion is
described in Part 4, 'ADVANCED PROGRAMMING', Section 4.2.3.18.

Communications parameters can also be set manually. An internal
program, 'COMMUNICATIONS PARAMETERS', can be accessed or called
by a user application program. See PART 5, 'COMMUNICATIONS',
for details.

PAGE 14

2.5

2.5.1

HUSKY OPERATION SECTION 2.5

CLOCK

HUSKY has a built-in calendar clock, keeping track of years,
months, days, hours, minutes and seconds.

Occasionally, HUSKY's clock may need adjustment.

Most user applications programs provide access to one of HUSKY's
internal programmes, 'INITIALISE CLOCK' mode.

HUSKY displays:
FIG.2.10

a) Using the __ (right arrow) and __ (left arrow) keys, step
the cursor to the item you wish to set. The seconds cannot
be set and are always initialised to zero when synchronis-
ing the clock (see below).

b) Using the | (up arrow) and | (down arrow) keys, step the
value selected until it is correct. The | key increments
the selected value and loops round to the associated
minimum value. The | key decrements the selected value and
loops round to the associated maximum value.

The months step in the following manner:-
Nov,Dec,Jan etc. ; | key
Jan,Dec,Nov etc. ; | key
c) Set the 'minutes' to one minute ahead of the present time.
d) Press 'Enter'. HUSKY will display:

'Press ENTER to synchronise'

REV.HC10APR PAGE 15

2.5.2

HUSKY OPERATION SECTION 2.5

e) When the time code, pip tone, or other reference arrives
press ENTER.

HUSKY's clock will run from zero seconds in exact synch-
ronisation with the external reference.

f) The clock automatically accounts for leap years.

g) If an attempt is made to specify an incorrect day value,
e.g. 3lst April, HUSKY will display the warning:

Error - Incorrect day value
The error must be corrected before synchronising the clock.
ADVANCED USE
HUSKY's clock can be used to time-stamp entries, automatically
label printouts or even initiate program execution auto-
matically, like an alarm clock.

See Part 4, 'ADVANCED PROGRAMMING', Section 4.2.3.20, for
details.

REV.BC10APR ™o 12

BASIC PROGRAMMING

PART 3

HUSKY BASIC PROGRAMMING

3.1 INTRODUCTION

3.2 HUSKY MEMORY

3.3 EXPRESSIONS AND OPERATORS

3.4 FUNCTIONS

3.5 ERROR CODES

3.6 POWER WARNING

3.7 MACHINE CODE CALLS

3.8 PROGRAMMING TECHNIQUES

3.9 OFFLINE PROGRAM STORAGE
APPENDICES

APPENDIX I ASCII CHARACTER SET
APPENDIX II CONTROL CODES

3.1
3.1.1

3.1.2

3.1.3

HUSKY BASIC PROGRAMMING SECTION 3.1

INTRODUCTION

Introduction

HUSKY BASIC is a powerful and flexible BASIC interpreter
installed within HUSKY's firmware, allowing user's programs to
be easily written and used without the need for any additional
equipment. In addition to normal programming features, HUSKY
BASIC can also handle communications with other devices.

Because it is designed for use in the portable environment,
HUSKY BASIC has some unique features not found in other Basics.
Principal amongst these is the ability of HUSKY BASIC to keep
both programs and data after its power has been switched off.
Data can be used later by the same or another program following
an intervening period when HUSKY is powered down and not in use
at all. Similarly, user's programs written in HOUSKY BASIC are
retained and are always available for further use until
deliberately cleared.

Different programs can be stored simultaneously and executed
independently by simple 'GOTIO' statements.

Variable definitions are common to all programs concurrently
resident in HUSKY and can be swapped between application
software without the need for global declaration.

Initiating HUSKY BASIC

HUSKY BASIC is accessed from HUSKY's main menu by stepping to
the 'BASIC interpreter' option using the scroll keys | | and
then by pressing 'Enter’.

HUSKY will then prompt:

HUSKY BASIC Interpreter
READY

If HUSKY is already loaded with an application program, 'main
menu' may not appear. Instead, the application program may
execute immediately. This simply means that the 'auto-start’
flag (see 3.1.4) is set.

Entering a Program

Programs are entered into HUSKY's user memory by first typing a
line number and then the program line required. Unnumbered lines
will execute immediately. Variables can always be inspected or
changed using 'Print' or 'Equal' statements. Effects of
functions and other operators can be determined empirically by
simply typing unnumbered lines and observing the result.

Certain functions are not allowed to execute directly e.g.
GOSUB.

REV.HC. 12JUL PAGE 1

~3.1.4

HUSKY BASIC PROGRAMMING SECTION 3.1

AUTO POWER FEATURE

'AUTO START — BASIC

Once a user program is written and fully debugged it may be felt
desirable for HUSKY to 'power up' directly into the user program
rather than going through the procedure of entering the Basic
Interpreter and typing RUN.

A flag has been provided to inform the start up software to
enter BASIC directly. The flag is STARTF at location 17832
(Decimal) which should have its value POKED to 170 (Decimal).
See Section 4.1.4

It has been made more difficult to ESCape from Basic under these
conditions, for program security and so as not to confuse the
operator.

To 'escape' from the program (back to the Basic Interpreter),
type ESC followed by a 5-digit escape code.

The default code is: 56580. However, this may be changed by
POKEing a new number into ESCCODE located at 17027 to 17031
(Decimal). Ensure that the number is numeric and in ASCII (48
decimal to 57 decimal), and that the POKE statements are
executed whenever the program is RUN.

The auto start feature can be disabled by resetting STARTF to 0
by the instruction:

POKE 17832,0

REV.HC. 12JUL - PAGE 2

3.2

3.2.1

3.2.2

HUSKY BASIC PROGRAMMING SECTION 3.2

MEMORY ALLOCATION

HUSKY's user memory is automatically partitioned by the BASIC
interpreter according to the number of program lines entered by
the user and the variable storage space required. Variable
storage is reserved using 'DIM' dimension statements and other—
wise as needed during the entry of a program.

As a guide, a 32K HUSKY standard model will allow user programs
up to about 600 lines of BASIC and still leave enough space for
about 2,000 variables to be stored. These variables can either
be individually allocated or can form arrays.

NOTE: certain types of variable (strings, double precision) can
only be used once array space has been declared for them using
'DIM'. Failure to do this will produce 'Array Error'.

Line Numbers

Line numbers are in the range 0 to 65,280. Extra lines can be
inserted into the text by simply typing in a new line number
between the two lines of interest. 1In view of this it is
recommended that line numbers are separated by an increment of
10 for each new line. Line numbers are stored in binary form
and occupy a constant space in memory regardless of the number
chosen. Each line number requires two bytes of memory.

Variable Storage

HUSKY variables can be stored as either single or double
preﬂgion floating point numbers. All numbers have the range
+10°“%. All simple variables are single precision giving 6
digit accuracy. Variables are designated by one alphabetic
character (A-Z) followed by an optional alphanumeric character
(A-Z) or (0-9), giving up to 962 separate variables.

NOTE: The simple variable names ON, TO, and IF should be avoided

as these are also reserved words. Use as variables can lead to
execution errors.

REV.HC.12JUL PAGE 3

3.2.2.1

3.2.2.2

HUSKY BASIC PROGRAMMING : SECTION 3.2

Arrays

Additionally, variables may form a one-dimension array using
'DIM'. Variable arrays may optionally be designated double
precision giving 14 digit accuracy but with an additional memory
overhead. Single precision arrays are designated by a number in
parenthesis following the variable name:

Al1(19),z(2) ,C(X) +A(20*T),AD(10) ,AZ (62)

There can be 962 separately identified arrays of single
precision variables.

NOTE: The number in parenthesis can be an expression. Each
variable occupies 5 bytes of HUSKY's user memory when part of an
array; 7 bytes otherwise.

Double Precision

Double precision arrays are identified by the symbol "I"
followed by a number or expression in parenthesis. Double
precision variables have 14 digit accuracy.

e.g:

A11(19),z1(2),C}(X) AA!(23)
There are a further 962 arrays.
Each double precision element occupies 9 bytes of HUSKY memory.
Remember that HOUSKY variable definitions are common to all
programs co-resident in user memory. If the variables are not
actually common to separate programs then remember to use
different names or numerical suffixes to differentiate between
them. Results can otherwise be confusing.
The following are all valid and independent variables:

X,X0,X1,X2,X3,%4,X5,X6,X7,%8,X9,
x(0),x0(0),x1(0),x11(0),X01(0), etc.

REV.HC.12JUL PAGE 4

3.2.3

3.2.4

HUSKY BASIC PROGRAMMING SECTION 3.2

String Storage
Literal strings are stored in arrays, and are identified by the
string symbol $.

String NAMES are defined exactly as variable names, with one
alphabetic character (A-Z) and one optional alphanumeric
character (A-7,0-9) giving a total of 962 separately identified
string variables.

Because storage overflow problems in the field caused by
insufficient string pool space would be unacceptable in HUSKY,
the programmer has to declare all strings by 'DIM' statements
whether used in arrays or not.
The maximum length of any string is 255 characters.

DIM A1$(10,15)

defines a string array of 11 elements, each of which can be up
to 15 characters long.

The maximum size of any array depends on the memory available.
Examples of String variables are:

Al$,2$,C58(22) ,H$ (J) ,MMS (32)

String variables can be initialised using LET, just assigned
using = (equate), or by READing fron DATA statements.

The first element of a string array may be referenced with just
the variable name, without the need for any number in
parenthesis.

Example:

AlS,Z$ actually refer to the variables A1$(0), z$(0)
A single variable may therefore be defined as:

ST$ (0,10) and used as:
ST$

Multiple Statements
HUSKY Basic supports multiple statements in a single program
line. Statements are separated by a colon (:)
Example:
100 A=0:B=10:PRINT A,B:B=11

The primary use of this feature is to reduce a program size. It
may also make a program more legible,

REV.HC. 12JUL : PAGE 5

3.2.5

3.2.6

HUSKY BASIC PROGRAMMING : : SECTION 3.2

PROGRAM LIMITS AND MEMORY USAGE

1. Ranges
Variables: +9.99999E+126
String arrays: Up to 255 characters per string
Line numbers: 0-65280 inclusive
Program line length: Up to 96 characters including line

number.
2. Precision
Single precision variables have 6 digit resolution. Double
precision variables have 14 digit resolution.

3. Memory Overhead
Program lines require 4 bytes minimum, as follows:

Line number: 2 bytes
Line length: 1 byte
Carriage Return: 1 byte

Also each reserved word, operator, variable name character,
special character and constant character requires one byte.
Maximum program size in present versions: 48K Bytes (Page O)
DYNAMIC (RUN-TIME) MEMORY ALLOCATION
1. Symbol Table

Entries occupy: 7 Bytes each.

Maximum symbol table size: 16K Bytes

2. Single Precision Array

variables

e.g. DIM(X) occupies (X+1)*5+7 Bytes
3. Double Precision Array

variable

e.g. DIM!(X) occupies (X+1)*9+7 Bytes

4. String Array Elements
e.g. DIMS(A,N) occupies (A+1) *N+7 Bytes

5. Array Size
Maximum number of elements in an array is 16,383.

See Section 3.8.5 for an example of a larger size array
program.

REV.HC.12JUL PAGE 6

HUSKY BASIC PROGRAMMING

SECTION 3.3

3.3. EXPRESSIONS AND OPERATORS

3.3.1 Symbolic operators for use with numerical variables:

Equality or assignment of values

't Addition
Tt Subtraction or negation of value
ta? Multiplication
'*%! Powers
Ly e Division
e Open parenthesis
e Closed parenthesis
'=>' Equal to or greater than
'=<' Equal to or less than
rt Less than
St Greater than
'<>'Y O Not equ;il to
3.3.2 Operators for use with string variables:
= Equality or assignment of values
'<>' Not equal to
At String addition or concactenation

REV.HC.12JUL

PAGE 7

HUSKYBASICPROGRAMMING SECTION3.4

BASIC FUNCTIONS

3.4 FUNCTIONS
HUSKY BASIC understands four kinds of function:
:Conmands
:Statements
:Operators
:Functions

Commands generally initiate an action and can also
control execution of application programs.

Statements form the structure of application programs and direct
program flow.

Operators are used to relate data and to test for
specified conditions.

Functions perform arithmetic or string computations.

Some commands and statements will function without further
information; others require an argument. An argument is either
a value, an expression or another function.

A complete index to functions is given overleaf.

REV.HC.12JUL 'PAGE 8

s o o
e o o o

W

'..»wwww

.
L BB DD

e o o

HEHEOONO s W

= o

v..pwwwww

WWw wWw
e bt
NS

.
<
s wo

o o

ww
&8
NN
50
e
Lo 9o

w w
e o
¢ o

w
[

>
o

°

N

e 6 0 ¢ o o o
[l il
e o © o o o o
N W -

w Wwwwwww

N NN DNDNDDN

>

o o
.
[e<]

WWWWWwwwwww
e o o o o © o o o

Ll R S N
© o o o o o o o o o o
WWWWWWWWWwWwWN
OB WNHO©

HUSKY BASIC PROGRAMMING

SECTION 3.4

INDEX TO BASIC FUNCTIONS

ABS
ADIN
ARG
ASC
ATN

CALL
CHRS
CLEAR
CONT
Cos
CRT

DATA
DIM

END
EXP

FOR
FRE

GOSUB
GOTO

HELP

IF
INCHR
INKEY
INP
INPUT

INPUT USING

INT
JSRS

LEFT$

LINCHR

LIST
LLIST

LOPCHR

Function
I/0 Statement
Function
Function
Function

Statement
Function
Command
Command
Function
Command

Statement
Statement

Statement
Function

Statement
Statement

Statement
Statement

Statement

Statement
I/0 Statement
I/0 Statement
I/0 Statement
I/0 Statement
I/0 Statement
Function

Function

Function
Functicn
Statement

I/0 Statement
I/0 Statement
Command

I/0 Statement
I/0 Statement
Function
Function

I/0 Statement

REV.HC. 12JUL

Returns absolute value of argument
Returns value of A/D converter input
Sets up argument for CALL

Returns decimal equivalent of string
Returns Arc-Tangent of argument

Calls machine-code subroutine
Returns string equivalent of argument
Clears all variables and pointers
Continues execution

Returns cosine of argument

Switches console to RS-232

Holds data for use by program
Initialises arrays

Terminates execution
Returns e to the power of the argument

Starts FOR...NEXT loop
Returns number of bytes free

Branches to subroutine
Branches to alternative line

Initialises HELP key text pointer

Conditional branch

Returns single character from keyboard
Returns keyboard status

Returns value at port address

Returns value at port address

Fixed field INPUT

Returns integer equivalent of argument

Returns fixed-field string

Returns left part of string
Returns lengths of string
Equates variables, strings
Returns single character from RS-232
Returns entry from RS-232

Lists program at LCD

Lists program at RS-232

Loads program from RS-232
Returns natural logarithm
Returns logarithm to base 10
Sends single character to RS-232

PAGE 9

3.4.40

3.4.41

.

NS
y

S

ww
.

¢ .
w N

)
w U1 U1 DD
HoOoOWoado Ul

[

w W w WWwwWwwwwww

.
[6]
S w

:hth B > Ll
.

v

AU,

WWwWwwwww w w

o o
N aooaoautut,
> WNHOWO

N
cwoogoWUm

3.4.71
3.4.72

3.4.73
3.4.74

3.4.75
3.4.76

HUSKY BASIC PROGRAMMING

LPRINT
MIDS

NEW
NEXT

ON BREAK
ON COMMS
ONERROR
ON GOSUB
ON GOTO
ON POWER
OPCHR

PEEK

POKE
POP

FRINT
PUSH

SIN
SOR
SRCH

STOP
STR$

WINCHR

WINPUT

I/0 Statement
Function

Command
Statement

I/0 Statement
I/0 Statement
Statement
Statement
Statement
I/0 Statement
Statement
I/0 Statement

Statement

Statement
Statement

Statement
Statement

Statement
Statement
Statement
Statement
Function
Function
Command

Function

Function
Function
Function
Statement
Statement

Function

I/0 Statement
Function

Function

Command

I/0 Statement

T/0 Function

REV.HC.12JUL

SECTION 3.4

Prints to RS-232
Returns mid portion of string

Initialises program space
Concludes FOR...NEXT loop

Vectors program on BREAK key
Vectors program on COMMS failure
Vectors program on Syntax error
Conditional branch to subroutine
Conditional branch

Vectors program on POWER key
Outputs 1 or more ASCII characters
Outputs to specified port

Returns decimal byte value of memory
locations.

Sets a specified memory location
Returns a numeric value from machine
code linkage/stack.

Outputs to LCD

PUSHES a numerical variable onto the
machine code linkage stack.

Reads data statements

Can be followed by REMarks

Resets Read pointer

Returns from subroutine

Returns rightmost portion of a string
Produces random number

Starts a program execution

Returns a value for the sign of its
argument. -

Returns Sin of argument

Returns square root of its argument.
Returns target string array position.
Modifies increment IN FOR-NEXT loop
Terminates program execution

Returns a string equivalent of a
numerical argument.

Formats Print output
Numerical argument

Returns numerical evaluation of a
character string.

Returns version number of BASIC
INTERPRETER.

Inputs a single character from an
optical wand.

Input character sring from optical
wand.

PAGE 10

HUSKY BASIC PROGRAMMING SECTION 3.4.1

ABS

Function ABS(N) returns the absolute value of the argument.

Syntax ABS(N) where N can be a variable, number or result of a
numeric expression.

Examples Y=ABS(-12.345) returns Y=+12.345
Y=ABS (-0.5) returns Y=+0.5
Y=ABS(0.5) returns Y=+0.5
or if v==27

Y=ABS (V) returns Y=+27
Y=ABS (V+50) returns Y=+23

REV.HC.12JUL) PAGE 11

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.2

ADIN

ADIN is a statement for use with the optional multiplexed
analogue to digital converter fitted within the Husky.

It causes an analogue to digital conversion to be executed
for a channel specified in the argument.

Variable = ADIN(x)
Where x is a channel number
A=ADIN(5)

PRINT "VOLTAGE INPUT"=",ADIN(5)*100

Channels are defined as 0 to 7.

The value obtained can be attributed to a variable or
contained in an arithmetic expression.

If a channel is overrange, the value '9999' is returned.
For sensitive applications this reading must be detected, a
numeric result being returned in order not to cause
mismatch or other syntax errors.

ADIN(x) returns the polarity of the applied voltage to the
channel together with its magnitude.

The ADIN(x) statement executes a conversion in 600 ms.

Huskies not fitted with the analogue to digital converter
will simply return meaningless data if ADIN is executed.

REV.HC.12JUL PAGE 12

HUSKY BASIC PROGRAMMING SECTION 3.4.3

ARG

Function ARG is used for passing parameters to machine code
subroutines.
Syntax D=ARG (N)

Where D is a Dummy Variable
N is the number to be passed.

Examples P=ARG(10) Passes 10
P=ARG(V) Passes V

Remarks ARG loads the 7Z80 E and C registers.

They are loaded with the higher and lower byte portions of
a 16 bit representation of the ARG argument.

For example if V in the example above was 4100 then:
E=16 C=4
NOTE: 16x256+4 = 4100

REV.HC. 12JUL PAGE 13

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.4

ASC

ASC returns the decimal ASCII value of the first character
of a string variable.

ASC("STRING")
Y=ASC(X$(3))
PRINT ASC("A")

will print 65

10 T$="AB"
20 PRINT ASC(TS$)

will also print 65.

The string argument must be enclosed in parenthesis.

ASC is particularly useful for detecting special characters
like control codes, and/or distinguishing them from digits
0-9 or characters A-7.

REV.HC.12JUL PAGE 14

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.5

AIN

ATN generates the angle whose tangent is specified by
expression.

ATN(N)
A=ATN(0.6009)
B=ATN (V)
sets A equal to 0.541071 Radians, i.e. 31°

B equal to ARCIAN of variable V

The resultant angle is specified in radians.
To convert to degrees:

A=ATN (V) x180/3.1415926
(P1=3.14159269)

REV.HC. 12JUL PAGE 15

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.6

CALL

CALL allows a machine code subroutine or an existing
routine in HUSKY's housekeeping package to be called from
BASIC and executed.

D=CALL (N)

where D is a dummy variable
N is a Call Address

10 A=CALL(0)
20 B=CALL (V) where V is the address to be called

switches execution to the program located at the location
spacified. This fuction causes a restart of the HUSKY's
software.

Further information on the use of CALL is provided in
section 3.6 and also in part 4, Advanced programming.

WARNING: Use CALL only as indicated in Part 4 Advanced
Programming, Section 2. Use of unspecified calls will
crash HUSKY, resulting in loss of data, etc.

When control has passed back to Basic from a machine code
program, then D = the final number stored in the Z80
accumulator when the program returns.

REV.HC. 12JUL PAGE 16

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.7

CHR$

CHRS$ Performs the inverse of ASC. It returns the one

character string specified by the expression.

CHR$ (N)

where N is a numeric expression betwen 0 and 127.
10 DIM A$(10,10)

1000 A$ = CHRS(34)

1010 PRINT "HE SAID,",A$,"HELLO",AS$

prints
HE SAID, "HELLO"

2000 A=CHRS (B)

IF B=7 then

2000 PRINT CHRS (B)

HUSKY bleeps.

2020 PRINT CHRS (1)

This clears the HUSKY screen.

The expression must have the value 0 to 127. The
expression must be enclosed in parenthesis.

(The parenthesis character " cannot be imbedded in PRINT
strings since it acts as a delimiter).

REV.HC.12JUL PAGE 17

HUSKY BASIC PROGRAMMING SECTION 3.4.8

CLEAR

Function CLEAR will set all variables defined in the applications
program to zero.

Syntax CLEAR

Examples CLEAR
resets all variables.

Remarks Note that the variables are also set to zero if at any time
program lines are altered or added. Variable contents are

otherwise maintained indefinitely by HUSKY, as described
earlier.

REV.HC.12JUL PAGE 18

PFunction

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.9

CONT

CONT continues Basic program after ESC.

CONT [LINE]
Line is optional and allows the program to continue from a
different line number.

CONT continue from next line
or

CONT 1000 continue from line 1000
Allows a program to continue execution from the line
following the occurence of:

a) detection of the break key

b) execution of a 'STOP' statement

c) execution of an 'END' statement

d) detection of a syntax error

By specifying a line number argument continuation can occur
from that line number.

In the case of multiple statement lines, execution will
occur from the next line.

REV.HC. 12JUL PAGE 19

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING

COS

COS returns the Cosine of the argument.

Q0S (ANGLE)
where angle is in radians.

X = 0S(Y) sets X equal to the cosine of Y.
R = COS(5)
R = (OS of 5 radians

NOTE: The argument is expressed in radians.
For angles in degrees, then use:
X=C0S (A x 3.1459269/180)

(PI=3.4159269)

REV.HC.12JUL

SECTION 3.4.10

PAGE 20

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.11

ORI

CRT causes the HUSKY to treat the serial port as the
display and keyboard rather than the internal LCD display
and keyboard.

CRT

CRT
sets keyboard and display functions to the RS-232 port.

The command is useful for entering programs quickly; also
characters not on the HUSKY keyboard may be used, e.g.
lower case alphabetics.

Any standard VDU may be used. Baud rates and other
parameters are set on the HUSKY using ‘'Initialise
Communications'.

Remember that a ‘crossed' RS-232 lead is needed with
GND,RXD and TXD circuits installed.

REV.HC. 12JUL PAGE 21

HUSKY BASIC PROGRAMMING SECTION 3.4.12

DATA

Function DATA statements hold constants for use in subsequent READ
statements.

Syntax DATA item 1, item 2....., item n.

Examples 100 DATA 12,Al1,25,SIN(0.5),MIDS(AS,3,4),99

110 DATA 5,6,7,8,6*5,"HELLO"

After reading the value 99 the READ will take 5, and so
on, until every data value is used. This form of data
storage is not affected by CLEAR or program line changes
which will erase variables. To return to the first value
in a DATA list use the RESTORE statement.

Remark The arguments for DATA statements can be either numer ical
values, variables, or expressions. Multiple arguments are
separated by commas.

String variables may be used in DATA statements. Direct
text must be enclosed in quotes.

NOTE: Care must be taken that variables in the

corresponding READ statement are of the same type as the
DATA.

REV.HC.12JUL PAGE 22

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.13

DIM

The DIM statement allocates arrays within the HUSKY.

DIM variable name (array size)

DIM double precision variable name (array size)

DIM string variable name (array size, element size)

where array size and element size are numeric expressions.
DIM A (25)

defines an array variable A of 26 elements, including the
element A(0). The array size must be a positive integer.

DIM J4(100), J5(100),0(1000),J(N)

defines multiple arrays. N is a previously defined
variable.

There are three kinds of DIM statement in Husky Basic :
Simple variables, double precision variables and strings.

Double precision and string variables can only be used once
space has been reserved by DIM.

The maximum array size is limited by available memory, and
is typically about 28,000 single precision variables for a
144K HUSKY, subject to program size.

NOTE: The maximum number of elements in a single array is
16,384,

All array types have a range from 0 (zero) to the limit
defined in the DIM statement.

Arrays can be allocated to any combination of variable
names.

Double precision arrays are defined in the same way except
for the use of "I". Each element has a l4-digit size.

DIM A!(25)
DIM AZ!(32)

define double precision arrays.
Space for string arrays is reserved in HUSKY memory using a

DIM statement followed by string name, the number of
elements in the array, and the maximum string length

REV.BC. 12JUL PAGE 23

HUSKY BASIC PROGRAMMING SECTION 3.4.13

required.
DIM A$(25,10)

defines a string array with 25 elements each of maximum
length of 10 characters.

Each character in a string requires 1 byte of storage.
Since HUSKY retains variable definitions indefinitely, DIM
statements should not be included in normal user program
sequences. Instead, arrays should be initialised by a
separate routine or defined manually, i.e. without line
numbers.

A useful technique is to set in the application software a
switch indicating whether the program is being used for the
first time or not. If the switch is a variable which is
made non zero when the program is first run, the fact that
any modifications or use of the CLEAR statement will clear
the value to zero can be used to determine whether the
arrays should be redefined or not.

10 If A = 1 THEN GO TO 100
20 DIM J(50)

0A=1
100 REM user program starts here.

NOTE: That the variable A could be used as a counter to
indicate the number of times that the program has been run.

REV.HC.12JUL PAGE 24

HUSKY BASIC PROGRAMMING

Function END terminates user program execution.
Syntax END
Examples 1000 END

when executed, displays:
STOP IN LINE 1000%

and returns control to the Basic interpreter.

Remarks END does not require an argument.

REV.HC.12JUL

SECTION 3.4.14

END

PAGE 25

HUSKY BASIC PROGRAMMING) SECTION 3.4.15

EXP

Function EXP(X) generates the value of e raised to the power of X
Syntax EXP (N)
Examples A=EXP(3)

A=e to the third power

B=EXP (N)

B=e to the power of N

Remarks X must be in the range -290 to +290.

If X is not in this range then a 'Magnitude Error' will
occur.

X may be an expression.

e is defined as: 2.7182818284590

REV.HC.12JUL PAGE 26

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.16

FOR

FOR executes a series of instructions in a loop a given
number of times.

FOR N =A TO B STEP C
NEXT N

Where N is a variable, A is a numeric start value, B is a
numeric end value and C is an increment/decrement value.

A, B and C can be numbers, variables or expressions.

10 FOR A = 1 TO 100 STEP 10

100 NEXT A

causes the value of A to equal 1,11,21 etc., for each
execution of the loop.

To obtain a decrementing count negative values of STEP are
used.

1000 FOR 7z1=91 TO 10 STEP -.1

1050 NEXT Z1

When followed by a NEXT statement, FOR will execute the
intervening parameters for the number of times indicated by
the values A and B divided by N to the formula:

B-A+l
N

Implements the loop 20 times.

When terminating FOR...NEXT loops it is important to end
using NEXT and not GOTO. Alternatively, exiting via a
RETURN when in a subroutine will not cause a build up of
the 'control stack’.

Failure to do this will result in a control stack error.

NEXT requires as an argument the same variable name used in
the corresponding FOR statement.

REV.HC.12JUL PAGE 27

BUSKY BASIC PROGRAMMING SECTION 3.4.16

STEP may be used to modify a FOR NEXT loop for increments
other than 1.

REV.HC. 12JUL PAGE 28

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.17

FRE

FRE returns the number of free bytes left in memory.
FRE(0)
0 is a dummy argument.
PRINT FRE(0)
displays amount of free space.
The argument (0) is a dummy.
or
A=FRE (0)
Sets A = amount of free space.
Note that if a program has not been RUN then the variables
will not have been assigned space. This enables easy
display of program size and, after RUNing, the total memory
usage.

The latter examples allows the AUTO SIZING of arrays to
their maximum size.

e.g. DIM A((FRE(0)-10240)/5)

This autosizes A leaving 10K (10240 byte) for other
variables. "5" is the number of bytes used for each member
of A. Remember to leave enough space for all simple
variables.

REV.HC. 12JUL PAGE 29

HUSKY BASIC PROGRAMMING SECTION 3.4.18

GOSUB

Function GOSUB causes execution to jump to a BASIC subroutine
located elsewhere in the applications program.

Syntax GOSUB line number
GOSUB numeric expression

Examples GOSUB 150

causes program execution to jump to a subroutine located
at 150.

The argument can also be an argument or expression, for
example:

GOSUB ST

or
GOSUB SI+100*A

This is illustrated by the program sequence:

10 INPUT A

20 s1=1000

30 GOSUB SI+100*A
40 STOP

1000 PRINT "THIS IS SUBROUTINE 1"
1010 RETURN

1100 PRINT "THIS IS SUBROUTINE 2"
1110 RETURN

etc.

which branches to the subroutine specified in A.
Remarks A subroutine must always be terminated by a 'RETURN' state
ment. Program execution then continues from the statement
immediately after the GOSUB. GOSUB always requires a line

number as an argument.

WARNING: Use this feature with care : ensure that only
valid argument values can exist under all circumstances.

REV.HC.12JUL PAGE 30

Remarks

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.19

GOTO

GOTO branches unconditionally to a specified line number.

GOTO line number
GOTO numeric expression

GOTO 50

causes program execution to commence immediately at line

10 Goro 100

causes program execution to skip from line 10 to line
100,

The line number may also be a variable or an expression.
Examples:

GOTO A

or

GOTO A*100

are equally valid.

The program sequence:

20 zZB=150

30 GOTO ZB

150 PRINT "THIS IS LINE",ZB
would give:

THIS IS LINE 150

GOTO is always used with an argument (line number). If
used as an immediate command, GOTO will cause program
execution to commence from the line number specified. If
used as part of a program, GOTO will cause program
execution to skip to the line number specified. If the
line does not exist execution will skip to next line
following.

If neither the line specified or a higher line is present
in memory, HUSKY will display:

LINE NUMBER ERROR IN LINE.ccccece

REV.HC. 12JUL PAGE 31

HUSKY BASIC PROGRAMMING SECTION 3.4.19

If the GOTO line was unnumbered, the error message line
number will be meaningless.

REV.HC.12JUL PAGE 32

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.20

HELP

HELP displays lines of text on HUSKY's screen when the HELP
key is pressed.

HELP line number
HELP numeric expression

1010 REM THIS IS A PIECE OF HELP TEXT
1020 REM INTENDED TO ASSIST THE OPERATOR
1030 REM IN THE USE OF HUSKY

1040 REM PLEASE PRESS ENTER TO RETURN
1050 REM TO PROGRAM

10000 HELP 1010

Execution of line 10000 will cause the block of remarks
to be used as the HELP text.

HELP requires an argument which must be a valid line
number. The referenced line must be a REM statement. When
the operator presses HELP, text from the referenced REM is
placed on the screen. Use of the | | cursor keys causes
scrolling through a contiguous block of REM statements.

The HELP text start may be changed by executing another
HELP statement.

It is recommended that all the HELP text be written con-
tiguously so that the operator may scroll through all of
it. Scrolling stops when any non-REM line is encountered,
so blocks of text can be easily partitioned if required.
The HELP display is terminated by pressing the 'ENTER' key.

REV.HC.12JUL PAGE 33

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.21

I

IF selectively executes program statements dependant on
result of an expression.

IF A (op)B THEN C

Where A is an expression, variable or constant and (op) is
an operator =, <, > etc.

B is an expression, variable or constant

C is either a line number or program statement sequence.

IF A = B THEN 100
IF A>B THEN PRINT "NO"

C may be a multiple statement which will be entirely
executed if the condition is true, but skipped if not.

HUSKY also permits nesting of IF statements.
Example:

IF A= B THEN IF C=D THEN PRINT "FINISHED":GOTO 1000

String expressions may be tested for equality or
unequality:
Example:

IF AS + B$ = "ABCDEAB" THEN 100
For strings of unequal length the equality will be true if

the string on the left of the equates is equal to or part
of the string on the right.

Example:
IF AS = "ABC"
B$ = "ABCDE"

AS$ = B$ is true
B$ = AS$ is not true

REV.HC.12JUL PAGE 34

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING ‘ SECTION 3.4.22

INCHR

INCHR inputs a single character from the keyboard.

INCHR variable name
INCHR "prompt string", variable name

10 INCHR "DECIMAL VALUE",A
20 PRINT A
30 GOTO 10

displays:

DECIMAL VALUE A 65
DECIMAL VALUE B 66
etc.

INCHR does not wait for ENTER to be pressed. A prompt
message is displayed as with INPUT. Only one variable may
be entered. The variable is set to the decimal value of the
character, as detailed in Appendix I.

A comma following INCHR or the prompt message will suppress
the prompt character '?'

NOTE: No values are returned for SHIFT, HELP, CONTROL or
POWER keys, although these function normally during INCHR.

'Escape' cannot be used to return to Basic from an INCHR
loop, since it simply returns the value 27!

REV.HC. 12JUL PAGE 35

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.23

INKEY

INKEY Checks the keyboard for the operation of a key.
INKEY A

INKEYQ=3 THEN STOP
detects control C and stops.

The variable A is attributed the value of the key pressed.
If no key is detected then the variable is equal to zero.

INKEY A = 65 THEN 1000

This variation allows a variable to be attributed the value
of the key pressed, and also its value to be tested as in
'IF' statements. If the result is true, execution branches
to the line indicated.

REV.HC.12JUL PAGE 36

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.24

INP

INP inputs a byte from the designated port.

INP (PORT)

where PORT is numeric Port Number.
A = INP(192)
sets A equal to the decimal value (0-255) of the binary
data present at the 8-bit port.

Refer to the Port Map in Part 4 (Advanced Programming)

Section 10 for details of Port addresses and functions.

INP can also be used with the optional parallel input Port.

REV.HC.12JUL PAGE 37

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.25

INPUT

INPUT obtains a line of data from HUSKY's keyboard.

INPUT variable name
INPUT, variable name
INPUT. variable name
INPUT "prompt string” variable name
INPUT "prompt string", variable name
INPUT "prompt string”. variable name

INPUT A

Inputs the variable A

INPUT "PARAMETER VALUES" A,B,C

Input the values of A, B and C with the prompt message:

PARAMETER VALUES
-

Note that input lines are always terminated by pressing the
'ENTER' key.

INPUT cannot be used as a direct statement.

A prompt message can be displayed by the INPUT statement. A
string variable name or a literal string is required as an
argument. Multiple variables can be strung together,
separated by commas.

A comma following INPUT (or prompt message) will suppress
INPUT's '?' prompt.

A period following INPUT (or prompt message) suppresses
both "?" and an echo to the terminating ENTER. This can be
useful on formatted displays, to prevent scrolling.

Input will function with any type of variable, but remember
that String and Double precision variables must have
previously been defined as a 'DIM' statement.

NOTE: If INPUT's argument is a simple variable and an
invalid entry is made, INPUT will simply re-prompt without
an error message. An example is:

10 INPUT A

The user types 'HELLO'. After 'ENTER', INPUT generates a
loud 'bleep' and re-prompts on the next line.

REV.HC.12JUL PAGE 38

Function

Examples

HUSKY BASIC PROGRAMMING SECTION 3.4.26

INPUT USING

INPUT USING obtains a line of data from HUSKY's keyboard
and validates this data with a user defined mask.

INPUT USING (<validation string>,min,max,E)<input string>
INPUT USING (<validation string>,min,max,E)VARIABLE

where min, max are numeric expressions and E is a special

command .

INPUT USING(AS,A,B)SS
INPUT USING(BS,,)A

INPUT USING ("A999",2,4)S$
Causes ? prompt

A minimum of 2 characters must be entered up to a
maximum of 4,

The inputs are stored in string expression SS. The first
entry must be a letter in the range A-%, the remaining
entries must be numbers in the range 0-9.

INPUT USING ("A999",,4)S$

The same as above, but minimum defaults to 1.

INPUT USING ("A999",2)S$

A minimum entry of 2 and maximum defaults to 95. Any
entries after the fourth are validated against WILD.

INPUT USING ("A999")S$

Minimum and maximum default to 1 and 95 respectively.
INPUT USING (MS$,3,6)S$

A minimum of 3 and up to a maximum of 6 entries are
allowed. The entries are validated against the string
expression MS$. The user will receive a '?' prompt.
INPUT USING (MS$,3,6)"ENTER",SS

Same as above, but with an 'ENTER' prompt.

INPUT USING (MS$,3,6,E)"ENTER",SS

Same as above, but after the 6th character has been
entered HUSKY will assume that the enter key has been

REV.HC.12JUL PAGE 39

Remarks

HUSKY BASIC PROGRAMMING ‘ 3.4.26

pressed.

Entry fields can be made numeric, alphanumeric, etc., in
flexible configurations. Entries that do not fit the mask
are rejected with clear warning indications.

INPUT USING is an extension of the standard INPUT statement
(see section 3.3.2.11). However, as each entry is made by
the operator, the character is checked against the defined
check string. A value which is out of range will cause an
audible bleep to occur and a special character to be
momentarily echoed on the screen, rejecting the invalid
entry.

The input validation string consists of defined validation
characters either in the form of a string expression e.g.
AS,B4S etc., or a direct string enclosed in quotations.
Input validation string may NOT be omitted.

The optional min and max expressions define the minimum
number and maximum number of entries required. If neither
min nor max are specified then default values of min 1 and
max 95 are assumed. If maximum exceeds the number of
characters in the input validation string, then the entries
for which there are no validation characters are validated
automatically with WILD characters.

The values min and max can be variables or arithmetic
expressions. Min must not exceed max or a syntax error will
occur. Min must not be negative or a magnitude error will
occur. Min and max must not exceed 95 or a syntax error
will occur.

'Enter' terminates entry. ' Enter' will not be accepted if
the number of characters is less than minimum.

When the number of characters exceeds maximum no more
characters will be accepted. A warning tone will sound.
The cursor control keys —— and —- are available in INPUT
USING fields to edit or correct data prior to pressing
'ENTER' .

The E parameter is optional. If it is specified then the
'enter' key does not have to be pressed to terminate the
input of the characters allowed by the validation mask.

CAUTION: If the input field extends over more than one
Husky screen line confusing results may occur in subsequent
attempts to delete or edit characters.

A comma following the validation expression will suppress

REV.HC.12JUL PAGE 40

HUSKY BASIC PROGRAMMING 3.4.26

the prompt character "?". However, if a prompt string is
being used then the comma must follow this prompt string to
suppress the prompt character "2"

A string, enclosed by quotes, immediately following the
validation expression will cause that string to act as the

prompt .

NOTE: Remember that string variables (AS,SS$, etc) must have
previously been defined by a DIM statement. See Section
3:8:2: 24

The scroll left and right keys are enabled in order to
allow the user to modify incorrect entries by simply over—
typing them. The delete key will delete the last character
entered.

|
|
:

A-Z only

A-7 space

A-Z 0-9

A-Z 0-9 space
0-9+-.,

0-9 only

Decimal point only
WILD

*°e OZU0UNOWP

NOTE 1: WILD allows a character in the range of space - del
which includes all letters and numbers. See Fig.3.8.2

NOTE 2: Control characters are not accepted. Other characters

than those in the table will give a Syntax error when
the statement is RUN.

REV.HC.12JUL PAGE 41

HUSKY BASIC PROGRAMMING SECTION 3.4.27

INT

Function INT returns the truncated equivalent value of the argument.

Syntax INT(N)
where N is a numeric expresion

Examples A = INT(123.456)

sets A equal to 123.

REV.BC.12JUL PAGE 42

HUSKY BASIC PROGRAMMING SECTION 3.4.28

JSR$

Function JSR$ (A,N) This function creates a string of given length
where the numeric argument is right justified and padded
with leading zeroes.

Syntax JSR$ (A,N)
A=Numeric argument
N=length
Examples A=-12,34
JSR$(A,8) = -0012.34
JSR$(A,5) = -12.3
A =12.34
JSR$ (A,8) = 00012.34
JSR$(A,5) = 012.3
Remarks For positive numbers the '+' signs are replaced by '0°.
Sign (0 and -) and decimal point each count as one
character.

REV.HC.12JUL PAGE 43

HUSKY BASIC PROGRAMMING SECTION 3.4.29

LEFT$

Function LEFT$(string,n) Returns the first n characters from a
designated string. Either the string or n may be express—
ions.

Syntax LEFTS$ ("STRING" ,N)

where string is a string expression N is the number of left
most characters.

Examples 10 A$ ="ABCDEFG"
20 BS = LEFTS (AS,3)
30 PRINT BS

prints ABC.

Remarks LEFTS (AS,0)

Null String i.e. " "
LEFTS (AS,50)

ABCDEFG

REV.HC.12JUL PAGE 44

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.30

LEN(string) returns the length of a string.

LEN ("STRING")

where string is a string expression.

10 AS = "ABCDEFG"
20 PRINT LEN (AS)

prints 7.

The string may be an expression (non-null characters).

A null string has zero length.

REV.HC.12JUL PAGE 45

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.31

LET

LET assigns a value to a variable.

LET variable name = numerical expression
LET string variable = string expression

LET C =5

LET D3 = B

LET J = SIN(X)

LET AS = "HELLO"

LET A$ = B$ (see note)

Entry of the LET statement is optional. The formats:

=5
D3 =B
J = SIN(X)
AS$ = "HELLO"
AS = BS (see notes below)

are equally acceptable.

NOTE 1: A string such as A$ must be defined as a single
dimension array. Inreality A$ is equivalent to
AS$(0) but either definition is accepted.

NOTE 2: When equating string arrays of unequal length the
string array on the right side of the equates will
be truncated on the left side.

Example:
A$ = "HELLO"
B$ = "GOODBYE"
AS$ = BS

then A$ = "GOODB"

Strings can be created by multiple additions.
Example:

AS = AS$ + MIDS$(CS$,4,3)+CHRS(65)

String expressions can also be created from complex string
expression functions. The derivation of the function
requires the creation of an expression stack which can
handle a maximum of ten functions. If the stack is
exceeded a 'string complexity' error will result.

Example:

AS = LEFTS$(RIGHTS(MIDS(AS,3,N),A),B)

REV.HC.12JUL PAGE 46

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.32

LINCHR

LINCHR inputs a single character from the RS-232 port.

LINCHR variable name
LINCHR "prompt string", variable name

10 LINCHR "DECIMAL VALUE",A
20 PRINT A
30 GOoTO 10

displays:

DECIMAL VALUE A 65
DECIMAL VALUE B 66
etc.

LINCHR does not wait for carriage return to be received. A
prompt message is displayed on the LCD screen as with
INPUT. Only one variable will be received. The variable is
set to the decimal value of the character, as detailed in
Appendix I.

A comma following LINCHR or the prompt message will
suppress the prompt character '?'

REV.HC. 12JUL PAGE 47

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.33

LINPUT

LINPUT obtains a line of data from HUSKY's RS-232 port.

LINPUT variable name
LINPUT, variable name
LINPUT "prompt string" variable name
LINPUT "prompt string", variable name

INPUT A
Inputs the variable A
LINPUT "PARAMETER VALUES" A,B,C

Input the values of A, B and C with the prompt message:

PARAMETER VALUES
?

Note that input lines are always terminated on reception of
a carriage return (CR) character.

LINPUT cannot be used as a direct statement.

A prompt message can be displayed by the LINPUT statement.
A string variable name or a literal string is required as
an argument. Multiple variables can be strung together,
separated by commas.

A comma following LINPUT (or prompt message) will
suppress LINPUT's '?' prompt.

LINPUT will function with any type of variable, but
remember that String and Double precision variables must
have previously been defined as a 'DIM' statement.

NOTE: If LINPUT's argument is a simple variable and an
invalid entry is made, LINPUT will simply re-prompt without
an error message. An example is:

10 LINPUT A

Husky receives 'HELLO'. After 'CR', LINPUT generates a
loud 'bleep' and re-prompts on the next line.

REV.HC. 12JUL PAGE 48

Function

Examples

Remark

HUSKY BASIC PROGRAMMING SECTION 3.4.34

LIST

LIST causes HUSKY to list one program line on the LCD
screen.

LIST line number
LIST numerical expression

LIST 100

lists line 100 on the screen. If there is no line 100 it
will LIST the next line in sequence.

LIST can be followed by a line number. LIST will only
display the first line.

Following the listing of the specified line, pressing |
will list the next line unless the end of the program has
been reached. Any other key will abort the LIST feature
and return to BASIC's input mode.

REV.HC.12JUL PAGE 49

HUSKY BASIC PROGRAMMING SECTION 3.4.35

Function LLIST causes HUSKY to list the applications program to the
serial port.

Syntax LLIST line number

Examples LLIST 100

will cause a listing to start at line 100 in the program.

Remarks If LLIST is followed by an argument (a line number) then
LLIST will begin listing to the serial port at the line
specified in the argument or the first line following if
line number does not exist. Otherwise, listing begins at
line O.

LLIST can be terminated at any time by the escape ('ESC')
key being depressed and held down until HUSKY responds with
a confirmatory 'beep'. Because a transmission buffer is
used, up to 256 characters may remain for transmission
after 'ESC' is confirmed. Power OFF will also abort a
listing at any time without loss of stored data or program.

It is advisable to check HUSKY's Communication Parameters
(Section 5.3) before using LLIST for compatibility with the
external device receiving the data. When a printer is
being used, remember to check for baud rate and line feed
requirements.

NOTE 1 LLIST increases HUSKY's battery consumption by
turning on the communications power supply. This is left
on at the end of the listing, so it is advisable to shut it
down either by typing OUT 132,0 (Section 4.10) or by power
off.

NOTE 2 Because the communications power supply is powered
up by LLIST, a single high-to-low character will appear at
the start of the record. Many systems will see this trans-—
ition as a single, spurious, character. To avoid this
problem, power up the interface first with either:

LPRINT " " or OUT 132,1

Otherwise, it may be necessary to edit out this character
on the host system.

REV.HC.12JUL PAGE 50

HUSKY BASIC PROGRAMMING SECTION 3.4.36

LLOAD

Function LLOAD command allows the HUSKY to re—load programs through
its serial port.

Syntax LLOAD

'Control Enter'

LLOAD.

Examples LLOAD
loads Basic source from the RS-232

Remarks Programs which were output using LLIST onto a storage
medium, e.g. disk or another HUSKY, may be reloaded using
this command. LLOAD is terminated by typing ESC. See
Section 3.9 for a detailed description of program
loading/unloading options.

Be sure to check HUSKY's receiving parameters (Section 5.3)
for compatibility with the device transmitting data.

LIOAD data goes into memory via the Basic interpreter input
routine and is syntax checked on the way - if errors or
spurious data are found in the incoming data, HUSKY will
stop loading and display:

* Syntax Error

If this occurs at the start of a file, it is likely that
some header data, not in Basic syntax, has caused the
problem.

Simply type LLOAD again, quickly, as HUSKY's input buffer
will still be receiving data.

To facilitate high speed loading the command:
LLOAD.
may be used. This will not echo incoming text on the

screen and cannot be stopped with ESC.

NOTE: A very useful shorthand for LIOAD permitted in Husky
Basic is 'Control Enter'. Simply press 'Control', followed
by 'Enter', together.

REV.HC.12JUL PAGE 51

HUSKY BASIC PROGRAMMING SECTION 3.4.37

LN

Function LN(X) generates the NATURAL logarithm of X, i.e: logarithm
to base e of X.
Syntax LN(N)

where N is a numeric expression.

Examples LN(8)
generates the logarithm to base e of 8.
If 5=9.12 then:
LN(S)

generates the logarithm to base e of 9.12.44

LN(-91)
generates a 'Magnitude Error' and programme execution will
stop.
Remarks e is defined in section 3.3.4.8.

X must be greater than zero.

If X is negative or equal to zero then a 'Magnitude Error'
will occur.

X may be an expression.

REV.HC.12JUL PAGE 52

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.38

LOG

LOG(X) generates the logarithm to base 10 of X.

LOG (N)

where N is a numeric expression.

1LOG (32)
generates the logarithm to base 10 of 32.
If 5=1.319 then:
LOG(S)
generates the logarithm to base 10 of 1.319.
LOG(-6)
generates a 'Magnitude Error' and programme execution will
stop.
X must be greater than zero.

If X is negative or equal to zero then a 'Magnitude Error'
will occur.

X may be an expression.

REV.HC. 12JUL PAGE 53

HUSKY BASIC PROGRAMMING SECTION 3.4.39

LOPCHR

Function LOPCHR outputs characters to the RS-232 port which have
their ASCII values defined as decimal argument(s).

Syntax LOPCHR numerical exprssion 1, numerical expression 2...
Examples LOPCHR 61,62 transmits =>
Remarks This permits computing of characters and also control of

special functions in receiving devices, such as printers.
The argument should be 0 - 127. Arguments greater than 255
will give an argument error.

REV.HC.12JUL PAGE 54

Function

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.40

LPRINT

LPRINT causes HUSKY to output to the serial port the value
of the number, expression or function supplied as an arqu-
ment.
LPRINT [%] STRING-OF-VARIABLES [%]
Where STRING-OF-VARIABLES is a list of variables, each
variable being separated by a comma.
LPRINT 10
outputs the number 10 to the serial port.

LPRINT SIN(X)
outputs the value of sine of X to the serial port.

Several arguments can be strung together, separated by
commas.

A comma following the last argument will suppress the
carriage return following LPRINT and will allow further
LPRINT statements in the program to output on the same
line.
Examples:
LPRINT 10,X,00S(T),
displays 10 0 .99999999999777
If X and T both equal to zero.
Literal strings can be displayed by using quotes as a
string delimiter.
Example:
LPRINT "THIS IS A STRING"
outputs 'THIS IS A STRING' to the serial port.
LPRINT formats can be altered by the following statements:
LPRINT % N %

sets the number of decimal places equal to N, a number in
the range 0-9. Rounding occurs up or down as appropriate.

LPRINT 3 Z N %

REV.HC.12JUL PAGE 55

HUSKY BASIC PROGRAMMING SECTION 3.4.40

sets the number of trailing zeroes (or decimal places)
equal to N, a number in the range 0-9.

PRINT % E %
sets all following LPRINT formats to scientific notation.
LPRINT % %

restores LPRINT format to normal.

REV.HC.12JUL PAGE 56

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.41

MID$

MIDS$(string,x,y) returns a substring of given length
starting at a given position.

MIDS$ ("STRING", POS,LEN)

where STRING is a string expression POS is its start
position, LEN is its length.

10 AS$="ABCDEFGH"

20 PRINT MIDS(AS,3,4)

prints CDEF

The string, x or y may be expressions.

MID$(A$,0,3) = ABC
MIDS(AS,4,0) = null string
MID$(A$,20,5) = null string

REV.HC. 12JUL PAGE 57

HUSKY BASIC PROGRAMMING C SECTION 3.4.42

NEW

Function NEW will re-initialise all HUSKY's user memory and reset
all program pointers.

Syntax NEW
Examples READY
NEW

are you sure (Y/N)?-
Y
94636 bytes available

READY

Remarks All program lines are erased!

NEW should, therefore, not be repeated if several programs
are to co—exist in the same HUSKY.

Always use NEW before loading a new user program into HUSKY
to ensure the maximum use of space.

NEW replies with:

Are you sure? (Y/N)
If any response to the confirmation message other than YES
(Y) is made, then the function is aborted and existing

programs are not affected.

Following the 'Y' response, NEW displays the number of free
bytes available before returning to BASIC.

REV.HC. 12JUL PAGE 58

FUNCTION

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.43

INEXT

NEXT [V]
V is optional and is a variable name that corresponds to
the original FOR statement. !

NEXT I or NEXT

It is quicker without the variable.

REV.HC. 12JUL PAGE 59

HUSKY BASIC PROGRAMMING SECTION 3.4.44

ON BREAK

Function ON BREAK allows the user to interrupt processing.

Syntax ON BREAK GOTO LINE

where line is a line number,

or
ON BREAK OFF
Examples ON BREAK GOTO 1000
ON BREAK OFF
Remarks This statement operates in a similar manner to the ON POWER

statement, except that the break key is monitored instead
of the power key.

REV.HC.12J0L PAGE 60

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.45

ON COMMS

ON COMMS On Comms allows communication errors (typically a
protocol failure) to be handled by the user's application
program.

ON COMMS GOTO LINE
where line is a number
or

ON COMMS OFF

ON COMMS GOTO 1000
ON COMMS OFF

The statement operates in a similar manner to ON POWER.

When a communications error is detected, control is
returned to the Basic interpreter. Execution continues from
a defined line number specified in the Basic program.

In order to allow normal communication error messages the
statement ON COMMS OFF disables this mode. See Section 5.9
for details of error messages. The byte of memory COMERR
(4540H - decimal 17728) is available to the programmer and
contains a code which represents the type of error which
has occurred in the communications. The available codes
and their meaning are described more fully in Section 5.9.

In a typical application, ON COMMS would be used to present
the Operator with a plain language statement of the form:

"Communications have failed. Please re-dial and try
again".

Re-trys or repeat blocks can also be controlled by the user
program, as required.

REV.HC. 12JUL PAGE 61

HUSKY BASIC PROGRAMMING SECTION 3.4.46

ON ERROR

Function

Examples

Remarks

ONERROR is used to catch errors which would normally give a
Basic Error message.

ONERROR LINE
where line is a line number.

ONERROR OFF

10 ONERROR 1000

20 INPUT A

30 A = SQR(R)

40 PRINT A

50 GOTO 20

1000 A =ABS(A)

1010 PRINT "NEGATIVE NUMBER CORRECTED"
1020 ONERROR 1000

1030 GOTO 30

This example will trap negative numbers and correct the
condition.

ONERROR causes program execution to be diverted to an error
handling subroutine.

Any error can be trapped. However, ONERROR is normally
used for correctable errors e.g. magnitude errors which
could be caused by operator input etc.

Each ONERROR line number is used only once and a previously
defined ONERROR line will be used with the next error.
ONERROR may be used within the error handler.

Line 1030 of the above program illustrates the necessity of
restoring the ONERROR trap after it has been used.

NOTE: ONERROR line numbers are stored in one of HUSKY's
Basic stacks. Repetetive ONERROR definitions (in a
FOR....NEXT LOOP, for instance) will result in stack
overflow.

REV.HC. 12JUL PAGE 62

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.47

ON.GOSUB

ON...GOSUB... allows conditional subroutine calls.

On expression GOSUB line number 1, line number 2,line
number n.

10 ON A GOSUB100,180
20 PRINT "HELIO"

If A=1 then program execution will go to line 100 and
will then go to line 20 when a RETURN is encountered.

If A=2 then program execution will go to line 180 and
will then go to line 20 when a RETURN is encountered.

10 B=100:C=300:D=350
20 ONAGOSUB B,C,D
30 PRINT "HELLO"

If A=1 then program execution will go to line 100 and
revert back to line 30 when a RETURN is encountered.

If A=3 then program execution will go to line 350 and
revert back to line 30 when a RETURN is encountered.

ON GOSUB will cause program execution to go to a line
number chosen from the list of line numbers positioned
immediately after GOSUB. The selection of a particular
line number in this list is determined by the value of
[expression].

Once program execution has been forced to go to one of the
selected line numbers, each statement following that line
number will be executed in order until a RETURN is
encountered. At this point program execution will revert
back to the statement following the list of line numbers.

The integer part of [expression] is used so that if A=2.9
program execution will go to line 180 in the example.

NOTE: The value of [expression] is NOT rounded up.

If the value of [expressmn] is zero or greater than the
number of line numbers in the list, then program execution
will continue with the next statement.

In the above example, if A=3 then "HELLO" will be printed
IMMEDIATELY.

The maximum value of [expression] allowed is 255.

REV.HC.12JUL PAGE 63

HUSKY BASIC PROGRAMMING SECTION 3.4.47

If the value of [expression] is greater than 255 or
negative then a 'Magnitude error' will occur.

The line numbers in the list of line numbers may themselves
be expressions.

REV.BC.12JUL PAGE 64

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.48

ON.GOTO

ON...GOTO... allows conditional jumping.

On expression GOTO line number 1, line number 2,line
number n.

10 ON A GOT0100,200,300
20 END

If A=1 then the program will go to line 100
If A=2 then the program will go to line 200
If A=3 athen the program will go to line 300

If A=1.3 then the program will go to line 100.

ON GOTO will cause program execution to jump to a line
number chosen from the list of line numbers positioned
immediately after GOTO. The selection of a particular line
number in this list is determined by the value of
[expression].

The line numbers may themselves be expressions.

The value of [expression], in the above example A, is
truncated to an integer.

It must be noted that the value is truncated to an integer
and NOT rounded up. So if the above example A=1.9 then the
program will go to line 100.

If the value of [expression] is zero or greater than the
number of line numbers in the list, then program execution
will continue with the next statement.

In the above example, if A=4, or if A=0 then the program
will automatically go to line 20, and an END will be
executed.

The maximum value of [expression] allowed is 255.

If the value of [expression] is greater than 255 then a
'Magnitude Error' will occur and program execution will
stop. If in the above example A=256 then an error will
occur. A 'Magnitude Error' will also occur if the value of
[expression] is negative.

Example:

10 ONAGOTO 100,200,300:PRINT "HELIO"
20 END

REV.HC.12JUL PAGE 65

HUSKY BASIC PROGRAMMING , 3.4.48

If A>3 or A=0 then the program will not go to any of the
lines but will immediately print "Hello", and then END will
be executed. . g

REV.HC.12JUL PAGE 66

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.49

ON POWER

ON POWER allows the programmer to trap and vector program
execution if a user presses the power off key.

ON POWER GOTO LINE

where line is a line number,

or

ON POWER OFF
ON POWER GOTO 1000

This statement causes the OFFVECT (See Section 4.1.4)
locations to be loaded with a vector so that if operation
of the power down key is detected, program execution occurs
from the line number specified.

Operation of the break key, or a syntax error, will cause
the vector to be re-initialised to enable the power on/off
switch to function normally.

ON POWER OFF

This statement also re-initialises the OFFVECT location.

REV. HC. 12JUL PAGE 67

HUSKY BASIC PROGRAMMING SECTION 3.4.50

OPCHR

Function OPCHR outputs characters to the screen which have their
ASCII values defined as decimal argument(s).

Syntax OPCHR numerical exprssion 1, numerical expression 2...

Examples OPCHR 61,62 displays =>
OPCHR1 clears the screen.

Remarks This permits computing of characters and also advanced
functions such as cursor addressing. The argument should
be 0 - 127. Arquments greater than 255 will give an arqu-
ment error.

REV.HC. 12JUL PAGE 68

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.51

OUT outputs a byte of data to a specified port.

OUT address, data 1, data 2....data n.

our 192,5,10

Outputs binary 5 and 10 to the parallel ports 192 and 193
respectively. :

OUT is used to control internal HUSKY functions like power
control. See part 4 Advanced Programming, section 10 for
details. With the optional parallel port, OUT is used to
write 8-bit data to external devices.

REV.HC.12JUL PAGE 69

HUSKY BASIC PROGRAMMING SECTION 3.4.52

PEEK

Examples

Remarks

PEEK fetches the value of a designated byte in HUSKY's
memory.
PEEK (ADDRESS)

where ADDRESS is a numeric expression.

PRINT PEEK (17933)
prints the value of location 17933 (in decimal) on the LD
screen.
PEEK requires the decimal value of the required memory

location as an argument.

See Part 4, of Advanced Programming, Section 1 for details
of PEEK-able locations.

REV.HC.12JUL PAGE 70

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.53

POKE

POKE allows the user to write to a specified location in
HUSKY's memory.

POKE address, data 1, data 2,....data n.

POKE 17724,1
Pokes the value 1 into location 177224 (453C
Hexadecimal).
This is the address of 'NYMPHO', the flag that inhibits
HUSKY's power off key. Try it!
Restore the situation with:
POKE 17724,0
and all is well.
The data can be a variable or an expression and must be in
the range 0-255. Values greater than 255 will give an
argument error.
POKE is primarily used for advanced control of HUSKY, and
is fully discussed in Part 4, Advanced Programming, Section
1.

WARNING Use POKE with care, and only as specified.

REV. HC. 12JUL ’ PAGE 71

HUSKY BASIC PROGRAMMING) SECTION 3.4.54

Function

Examples

Remarks

POP fetches (POP's) a value from the machine code
subroutine linkage stack.

POP (N)

where N=number of parameters to be POPPED.

A=POP(2)
POPs two values of the machine code linkage stack.

A=latter parameter.
Allows Basic to access 16 bit results from machine code
subroutines.

Refer to Section 3.6.4 which discusses machine code calls.

LS

REV.HC.12JUL PAGE 72

Function

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.55

PRINT

PRINT causes HUSKY to display on the LCD screen the value
of the number, expression or function supplied as an argu-—
ment.

PRINT variable 1, variable 2, variable 3,
PRINT "literal string", variable,
PRINT expression 1, expression 2,
? variable, "literal string", expression

PRINT may be represented by "?" for shorthand purposes.
Typical examples:

PRINT 10

or
210

displays the number 10 on the screen.
PRINT SIN(X)

displays the value of sine of X on the screen.

Several arguments can be strung together, separated by
commas .

A comma following the last argument will suppress the
carriage return following PRINT and will allow further
PRINT statements in the program to output on the same line.
Example:

PRINT 10,X,COS(T),
displays 10. 0 .99999999999777
If X and T both equal to zero.

Literal strings can be displayed by using quotes as a
string delimiter.
Example:

PRINT "THIS IS A STRING"
displays THIS IS A STRING on the LCD screen.
Also note that strings may be printed with embedded control

characters (hold the control key and press an alphabetic
character) .

REV.HC.12JUL PAGE 73

HUSKY BASIC PROGRAMMING SECTION 3.4.55

Example:
? "Control G" sounds the internal bleeper.
In practice, OPCHR or CHR$(X) may be found more convenient
for these functions since subsequent printer listings are
unlikely to reveal control codes embedded in programs.
PRINT formats can be altered by the following statements:
PRINT 3 N %

sets the number of decimal places equal to N, a number in
the range 0-9. Rounding occurs up or down as appropriate.

PRINT % Z N %

sets the number of trailing zeroes (or decimal places)
equal to N, a number in the range 0-9.

PRINT % E %
sets all following PRINT formats to scientific notation.
PRINT % %

restores PRINT format to normal.

REV.HC.12JUL PAGE 74

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.56

PUSH pushes a variable or constant onto HUSKY's machine
code subroutine linkage stack which is generally used with
machine code CALLS.

PUSH variable 1, variable 2,variable n.

PUSH A,B
pushes the integer (16 bit binary) representation of the
variables A and B onto the stack.
These variables may be accessed or modified by a machine
code program. See section 4.9 on machine code programming.

POP is the reverse of PUSH.

REV.BC.12JUL PAGE 75

HUSKY BASIC PROGRAMMING SECTION 3.4.57

READ

Function READ is used to input constants previously defined in a
DATA statement.

Syntax READ STRING OF VARIABLES
Where string of variables is a string of variables each
separated by a comma.
Examples READ X
sets X equal to the current DATA constant.
For example the program:
10 DIM D! (10) :DIM AS$(10,10)
20 pATA 3,4,5,2/3,"HELLO"
30 READ A,B,C,D!(0),A$(1)
40 PRINT A,B,C,D!(0),A$(1)
Prints:
345 .66666666666666 HELLO
with A,B,C equal to three sequential DATA constants, D!(0)

a double precision constant and A$(l) a string expression.

Remarks The constants are read sequentially until exhausted, when
an error will result. The sequence may be restarted by
using RESTORE.

The variable type in READ must be the same as the
corresponding DATA items: if not, a READ ERROR will occur.

REV.HC. 12JUL PAGE 76

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.58

REM

REM (REMark) denotes that the following text is a comment
statement only.

REM COMMENTS

10 REM THIS IS A COMMENT

REM is also used for storage of HELP text. See 3.3.2.7

REM statements are ignored by the program.

Each character or space in a comment line occupies one byte
of memory.

Unnumbered REM statements can be used in host computer
storage files for additional comment lines: these will be
ignored by HUSKY when the file is loaded.

REV.HC. 12JUL PAGE 77

BUSKY BASIC PROGRAMMING SECTION 3.4.59

RESTORE

Function

Remarks

RESTORE is used with READ. RESTORE initialises the current
DATA pointer to the first item in the list.

RESTORE line number.

RESTORE may also be used with a line number argument. This
will initialise further READ functions to a specified line.

REV.HC.12JUL PAGE 78

HUSKY BASIC PROGRAMMING SECTION 3.4.60

RETURN

Function RETURN from subroutine
Syntax RETURN
Examples 10 GOSUB 100
100 PRINT I
200 RETURN
Remarks RETURN is the logical conclusion of a GOSUB statement.

Placed at the end of the subroutine, KRETURN causes
execution to continue at the next statement following the
original GOSUB statement.

REV.HC.12JUL PAGE 79

HUSKY BASIC PROGRAMMING SECTION 3.4.61

Function RIGHT$(String,n) returns the last n characters of a given
string.

Syntax RIGHTS ("STRING",N)
where N is the number of rightmost characters to be
returned.

Examples RIGHT$ ("ABCDEF",3)

returns DEF

Remarks Both string and n must be enclosed in parenthesis and can
be expressions. If length of the string is less than n
then the entire string is returned.

If AS$ = "ABCDEF"
then:

RIGHT$(AS,0) = null string
RIGHTS(AS,20) = ABCDEF

REV.HC.12JUL PAGE 80

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.62

RND

RND returns a l4-digit psvedo random number in the range 0-
0.9699895¢009999,
RND(0)

where "0" is a dummy argument.

A = RND(0)

sets A equal to a random number.

RND requires a dummy argument.

REV.HC.12JUL PAGE 81

HUSKY BASIC PROGRAMMING SECTION 3.4.63

RN

Function RON causes program execution to commence.

Syntax RUN
RUN line number
RUN numerical expression
Examples RUN 1000
causes execution to commence from line 1000.
Remarks RUN is useful when program de-bugging as it initialises the
system stacks; GOTO does not.

The line number may also be a variable or an expression,
for example:

RUN A
or
RUN A*100

are equally valid.

REV.HC.12JUL PAGE 82

HUSKY BASIC PROGRAMMING SECTION 3.4.64

SGN

Function SGN returns the value of the sign of the argument.

Syntax SGN (N)

where N is a numeric expression.

Examples A = SGN(-9.5)
sets A equal to -1
A = SGN(0)
sets A equal to 0
A = SGN(1.76E9)

sets A equal to 1
Remarks Result:

1 if positive
0 if Zero
-1 if Negative

REV.HC. 12JUL PAGE 83

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.65

SIN

SIN returns Sine of the argument.

SIN(N)

where N is a numeric angle in radians.

J = SIN(2.56)

sets J equal to the value of the sine of 2.56 radians.

The argument is expressed in radians.

To convert to degress the A=SIN(30 x3.1415926) PI
100

A=SIN 30 deg.

REV.HC.12JUL : PAGE 84

HUSKY BASIC PROGRAMMING SECTION 3.4.66

Function SQR (Expression) returns the square root of the argument.

Syntax SCR(N)

where N is a numeric expression.

Examples Q = SQR(16)

sets Q¢ equal to 4.

Remarks The argument must be positive.

REV.HC. 12JUL ’ PAGE 85

HUSKY BASIC PROGRAMMING SECTION 3.4.67

SRCH

Function SRCH function enables an array to be searched for the
occurrence of a specified element within that array.

Syntax SRCH(<array element>,<numerical expression>)

The array element specified is used as the reference to be
searched for in the remaining array.

Examples PRINT SRCH(AS)
A=SRCH(A(5) ,3)
IF SRCH(A!(0),1)<>5 THEN OPCHR7

Consider for example the following arrays.

AS$(0)="ABCDE"
AS$(1)="AB"
AS$(2)="ABCDE"
A$(3)="ABCDE"
AS(4)="ZXYZ"
AS(5)="ABCDE"

Remarks When found the element number is returned. If not found
then zero is returned.
The function searches from the specified element to the end
of the array. As an option, up to 255 occurrences can be
checked for by specifying in the verb the number of repeat
occurrences.

If this value is 256 or larger a syntax error will occur.

The result of SRCH is a numeric value which can be used in
arithmetic expressions etc.

The search function can also be used on simple or double
precision arrays.

The following are the results of search on the above array:

SRCH (AS) gives 2 : as element (2) is the first
occurrence of element (0).

SRCH (A$,2) gives 3 : as element (3) is the second
occurrence of element (0).

SRCH(A$(2),1) gives 3 : as element (3) is the first
occurrence of element (2).

REV.HC.12JUL PAGE 86

HUSKY BASIC PROGRAMMING SECTION 3.4.67

SRCH(AS$(4)) gives 0 : as element (4) is not found else-
where.

When search is applied to numeric arrays the comparison
must be exact for equality.

For string arrays the rules apply as in the 'IF' statement,

i.e. the comparison is equal if the reference string is
equal to, or a subset of, the searched string.

Example:
PRINT SRCH(AS$(1))

would return 2 as A$(1) is a subset of AS$(2).

REV. HC. 12JUL PAGE 87

HUSKY BASIC PROGRAMMING SECTION 3.4.68

SIER

Function STEP

Syntax STEP N
where N is the STEP increment.

Remarks Can be positive or negative.

STEP is a part of the FOR command.

REV.HC.12JUL PAGE 88

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.69

STOP

STOP terminates program execution and prints a message on
the LCD screen.

STOP

550 STOP
causes:
BREAK IN LINE 550%

Typing CONT causes execution to continue from the line
following STOP

REV.HC.12JUL PAGE 89

HUSKY BASIC PROGRAMMING SECTION 3.4.70

STR$

Function

Examples

Remarks

STRS$ (Expression) converts a numeric expression to a string.

STRS (N)

where N is a numeric expression.
10 A = 123.6
20 B$ = STR$(A)

sets B$ = "123.6"

10 A = 7.941E12
20 BS = STR$(A)

Sets B$ = "7.941E12"

This function permits the use of string operations on
numbers. '

Expotential notation numbers are represented literally in
string form.

REV.HC.12JUL PAGE 90

Function

Examples

Remarks

HUSKY BASIC PROGRAMMING SECTION 3.4.71

TAB

TAB allows neat columns of figures, etc., to be printed.

TAB (N)

where N is the PRINT POSITION to begin PRINTING.

100 LPRINT TAB (10),X

will print the value of X leaving 10 columns from the left
hand border.

In an LPRINT statement TAB specifies how many columns to
skip before starting to print.

If the value of the numeric expression is less than the
print position, then TAB is ignored. The value of
expression should not exceed 255 or be negative.

Due to leading space suppression in HOSKY's display
handler (necessary to optimise use of the 32 character
lines), TAB can be confusing in PRINT statements. A
character in the first column position will allow TAB to be
used with the LD display.

REV.HC.12JUL _ PAGE 91

HUSKY BASIC PROGRAMMING SECTION 3.4.72

TAN

Function TAN (expression) returns the tangent of an angle.

Syntax TAN (N)

where N is a numeric in radians.

Examples T = TAN(2.56)

sets T equal to —.657453 (tangent of 2.56 radians)

Remarks The argument is expressed in radians.
To get tangents of angles in degress then convert:

A=TAN (Angle x 3.14159269) PI
180

REV.HC.12JUL

PAGE 92

HUSKY BASIC PROGRAMMING SECTION 3.4.73

VAL

Function VAL(String) performs the inverse of STRS. It converts a

string of digits into a number.
Syntax VAL ("STRING")
where string is a string expression.
Examples 10 AS = "123.6"
20 B = VAL(AS)
sets B to 123.6

Expotential notation numbers are converted literally.

Example:
10A$ = "2.91E6"
20 B = VAL(AS)

sets B = 2.91E6

REV.HC. 12JUL PAGE 93

Function

Examples

HUSKY BASIC PROGRAMMING SECTION 3.4.74

VER

VER reports the version number of the Basic interpreter
implemented in this HUSKY.

VER

VER
HA29JUN82

REV.HC. 12JUL PAGE 94

Remarks

HUSKY BASIC PROGRAMMING ' SECTION 3.4.75

WINCHR

WINCHR inputs a single character from the optical wand.

WINCHR N
where N is a numeric variable.

This function acts exactly like INCHR, but with the
optional optical wand. The value is returned from the
optical bar code exactly like a keyboard input.

If a multiple character bar code is scanned then WINCHR
will return the first character and the rest of the code
will be ignored. :

As with WINPUT if any key is pressed prior to the bar code
input, then the input is taken from the keyboard instead.

REV.HC. 12JUL PAGE 95

HUSKY BASIC PROGRAMMING SECTION 3.4.76

WINPUT

Function

Exauples

Remarks

WINPUT This function acts exactly like INPUT, but with the
optional optical wand.

WINPUT prompt, variable. (See also INPUT)

WINPUT A$
INPUTS WAND DATA INTO AS

The string returned from the optical bar-code is read
exactly like a keyboard input. If any key is pressed prior
to bar-code input then the input will be taken from the
keyboard instead.

The bar code used is selected from the special functions
menu, details of which may be found in section 6.4.1.

The use of string variables is recommended to allow for any
alpha content.

REV.HC.12JUL PAGE 96

HUSKY BASIC PROGRAMMING

This page intentionally left blank

PAGE 97

HUSKY BASIC PROGRAMMING

This page intentionally left blank

PAGE 98

3.5

35el
3.5.2

3.5.3
3.5.4
3.5.5
3.5.6

3.5.7

3.5.8
3.5.9
3.5.10

3.5.11

3.5.12

3.5.13

HUSKY BASIC PROGRAMMING SECTION 3.5

ERRORS AND WARNINGS

*Argument error
Invalid argument.

*Array error
Attempt to use an element of an undefined array.

*Break
Detection of a manual 'ESC' key operation (HUSKY not in auto-
start) or execution of a 'STOP' instruction.

*Control Stack error
Incorrect RETURN or NEXT statement or GOSUB without RETURN or
FOR without NEXT.

*Dimension error .
Attempt to re-define an existing array variable. (DIM State-
ment)

*Direct Input error)
Caused by typing NEXT X, for example, which is meaningless
except as a numbered program line.

*Floating Point error
Value of constant or variable is irrational.
Example:

A =3/0

*HELP SOURCE ERROR
The reference HELP text line does not exist.

*Line Number error
Non-existent line number referred to.

*Line Overflow error
More than 96 characters in one line.

*Magnitude error :
Attempt to access an array element that is outside of range
defined in the corresponding DIM statement.

*Negative Square root
Negative numbers have no root!

*Read error

Invalid data present in a DATA statement. (Variable type and
Data constant type’ are not the same).

REV.HC10APR PAGE 99

3.5.14

3:5.15

3.5.16

3.4.17

3.5.18

3.5.19

HUSKY BASIC PROGRAMMING SECTION 3.5

*Storage Overflow error
Variable storage or DIM reservation has overflowed available
memory space.

*Syntax error
Incorrect line.

*System Stack error
Attempt to POP a variable from the stack which has not
previously been stored by PUSH.

*String complexity error

Attempt to evaluate a complex string expression which has
exceeded the expression stack. To correct this error simply
break the expression down into simpler parts.

*String pool overflow error
Insufficient space to manipulate the string expression.

*Type mismatch error
Invalid equate attempt.
Example:

A = AS

" REV.HC10APR PAGE 100

3.6

HUSKY BASTC PROGRAMMING SECTION 3.6

[POWER WARNING

When HUSKY's batteries become exhausted a power warning message
will appear on the screen. Normal operation will continue, but
keyboard entries will be punctuated by warning tones and
repetition of the power warning message until the battery state
is rectified either by replacement of primary cells or recharg-
ing of secondary cells, if installed.

Evenutally, if the warnings are ignored, the HUSKY will shut
down and refuse to operate further.

Every HUSKY has to pass a stringent operating test in this low
power regime. However, it is strongly recommended that operator
training procedures and user programs are structured to avoid
continued operation when warnings become persistent, especially
when rechargable cells are used.

The power warning sequence may be misleading if RS232
communications are used infrequently. When HUSKY's
communications system is activated power drain increases
significantly. This increase can cause the power warning stage
to be missed altogether, and instead cause the HUSKY to shut
down without warning.

While this is not hazardous, it can be very confusing for an
operator who does not know what is wrong. Because of this it is
recommended that user programs with infrequent communication
requirements use a test routine. This activates the
communications package, and then tests the power state before
restoring the HUSKY to normal. This routine is used at the start
of every data entry sequence.

A sample warning program of this kind is given below.

If batteries become exhausted whilst communications are in
progress, then normal power warning messages will appear once
the keyboard operation is resumed.

NOTE that power warning messages only occur when keyboard
entries are in progress.

REV.HC10APR PAGE 101

HUSKY BASIC PROGRAMMING SECTION 3.6

SAMPLE WARNING PROGRAM

20 O0uUTl32,1

30 J=INP(2):0UT132,0

40 T1=J-8*INT(J/8)

50 IFI>3THEN100

60 OPCHR1

70 PRINT"PLEASE CHANGE BY BATTERIES!"
80 OPCHR7,7,7,7,7,7,7,7

90 0uUT131,0

100 RETURN

This program operates as follows:

1) The power status is available as bit 3 in HOSKY port 2. 1 =
power OK, 0 = Low Power state.

2) Line 20 energises the RS-232 serial interface.

3) Line 30 reads the power state from port 2, and then closes
down the interface to conserve power.

4) Line 40 extracts the power status bit.

5) Lines 50-90 Display a warning and ring HUSKY'S bell!

REV.HC10APR PAGE 102

3.7

3.7.1

3.7.2

3.7.3

MACHINE CODE CALLS

HUSKY is designed to be extremely versatile and flexible in its
use. For some applications it is not possible to perform every
function using pure BASIC routines, usually for reasons of
speed. It is possible to write machine code routines in these
situations.

Also covered in this section is some general guidelines in the
control of HUSKY by means of PEEK and POKE to specified memory
addresses.

It should be emphasised that the use of features described here
is not recommended for users unfamiliar with computing at
machine code level.

The Machine Code

HUSKY uses the CMOS NSC-800 microprocessor, which provides an
instruction set entirely compatible with the popular %80 micro—
processor. For that reason it is not proposed to go into detail
about the facilities offered by machine code and users are
referred to any of the standard books which cover the Z80.

It is not recommended, however, that the stack pointer register
(SP) is either moved or used in a fashion incompatible with
supporting interrupts. Standard use in the form of subroutine
CALLs, PUSHes and FOPs, however, is supported.

BASIC CALL
To activate a user or system program at a known address the
function:

CALL (addr)

is used. This will pass control from BASIC to the address.

A machine code RET will return the user to BASIC. The most
common routines to be used will be the system calls for reading
the clock, etc., which are fully documented in Part 4, Advanced
Programming.

Passing Simple Parameters

It is possible to pass information both from BASIC to the
'called’ program and return information back to BASIC.

To set up outgoing data the ARG function is used, format as
shown. The variable will be equated to the value in brackets.

A = ARG(5)
will cause the NSC800 internal registers C and E to be set up as

follows:

REV.HC10APR : PAGE 103

3.7.4

c=5
=0

The pair:'are set up as a 16-bit integer, hence:

ARG (10%256+30)

causes:
C =30 and:
E =10 (decimal)

when CALL is executed.

These registers are used for compatibility with the "CP/M" style
system call structure.

To return data to BASIC the line:
1000 X = CALL (addr)

causes the value of variable X to take on the value contained in
register A.

Passing Multiple Variables
To pass more than one integer between a called program and BASIC
the machine code linkage stack is used.

This is controlled in BASIC by PUSH and POP. In the routine:

1000 PUSH X,Y

1010 A = CALL (addr)
1020 Y = POP(1)
1030 X = POP(1)

The integer values of X and Y are first placed on the stack and
made available to the called routine, and then removed by the
POP instruction back into their own variables.

When CALL is executed the register pair HL is used as an address
pointer to the bottom of the stack on which the variables are
placed:

X HIGH
X LOW

Y HIGH
HL Y LOW

In other words HL is addressing the low byte of the most

REV.HCL0APR PAGE 104

3.7.5

HUSKY BASIC PROGRAMMING SECTION 3.7

recently PUSHED variable. To access others then HL is
incremented. These values may either be used by the called
routine or modified and used by BASIC. It is not necessary to
preserve the contents of HL.

Controlling HUSKY

Part 4, Advanced Programming, Section 2 contains a list of
available addresses of HUSKY parameters and system call
addresses. The parameters may be written or read by means of
PEEK and POKE operations. System calls may be used for
functions such as the CLOCK or communications parameters.

An example of a program to read the clock is in the program
examples.

REV.HC10APR PAGE 105

3.8

3.8.1

HOSKY BASIC PROGRAMMING ‘SECTION 3.8

PROGRAMMING TECHNIQUES

To the programmer, most of HUSKY's features are likely to seem
familiar and quite comparable with many other, less portable,
microcomputers.

To the operator, HUSKY is likely to be quite different from
anything he's encountered before. This fundamental divergence
in experience can present a major challenge to the skill of the
programmer.

Because HUSKY operators tend to be newcomers to computer
techniques, and worse, tend to capitalise on HOSKY's unique
physical characteristics by using it far away from the comfort
of the computer room, considerable demands are placed on the
quality of the programming. These demands are met by making
programs as error—-free and '‘bullet-proof' as possible, together
with careful program structures. A HUSKY that interrupts a data
entry sequence in the field with "Magnitude Error in Lin€eeee..”
is not likely to be appreciated by the user, or worse, by his
customers.

Knowing that field operators would have difficulty in recovering
from programming failures on the spot, HUSKY's designers have
provided a number of facilities that help overcome these
difficulties. But because HUSKY's programming has to have
greater integrity than is ever required at the desk-top, there
is no substitute for methodical discipline in programming.

The contents of this section explain some techniques that are
successfully used to provide reliable and ergonomically friendly
user programmes.

Data Capture Techniques
A typical HUSKY application program consists of 3 segments:

A 'Data Capture' segment
An 'Inspection' segment
A 'Transmission' segment

All three segments are contained in a common program although
treated as independent modules. All share a common database,
the 'captured' information, generally stored in array
structures.

The operator (as opposed to the programmer) is given a limited
range of options within this framework and never has access to
the Basic interpreter. On power-up, HUSKY will typically
present a menu-style choice of options, often based on the
segments or modules themselves.

- REV.HC10APR PAGE 106

HUSKY BASTC PROGRAMMING SECTION 3.8

Once a module is selected, HUSKY will lead the operator through
a question and answer sequence until his objective is achieved.
Consider the following data capture program:

10 REM TELEPHONE NUMBERS

20 REM THIS PROGRAM CAPTURES AND STORES NUMBERS
30 REM UP TO 6 DIGITS LONG. THEY CAN THEN BE
40 REM RECALLED OR LISTED ON A PRINTER.

100 REM MODULE 0 WHICH FUNCTION?

110 PRINT "PLEASE CHOOSE A FUNCTION, TYPE 'l' TO ENTER
DATA; '2' TO INSPECT OR '3' TO TRANSMIT",

120 INPUT A

130 IF A=1 THEN 200

140 IF A=2 THEN 300

150 IF A=3 THEN 400

200 REM MODULE 1 DATA CAPTURE
210 DIM D(10)

220 FOR N=1 TO 10

230 INPUT D(N)

240 NEXT N

250 GOrO 100

300 REM MODULE 2 INSPECT DATA
310 PRINT "WHICH NUMBER DO WANT TO INSPECT?"
320 PRINT "PLEASE ENTER A NUMBER 1-10!",
330 INPUT N

340 PRINT D(N)

350 GOTO 100

400 REM TRANSMIT THE DATA

410 FOR N=1 TO 10

420 LPRINT D(N)

430 NEXT N

440 GOTO 100

This very simple program demonstrates the basic features of much
more complex data capture routines, but has one dramatic failing
: it is not "bullet proof".

If the operator does not stick precisely to the sequence laid
down, the program will soon encounter a problem and resort to
error messages that will not help a non-programmer. Because of
this, the great majority of effort in programming Husky
applications is devoted to preventing occurancies that might
confuse the non-technical.

HUSKY's Basic interpreter contains many features designed to

prevent the inexplicable happening in the field: but complex
programs can sometimes outwit even their own authors!

REV.HC10APR PAGE 107

3.8.2
3.8.2.1

3.8.2.2

HUSKY BASIC PROGRAMMING SECTION 3.8

A simple solution to this problem is simply to add three more
lines:

50 ONERROR 500
500 PRINT "THAT CAN'T BE RIGHT - PLEASE TRY AGAIN"
510 GOTO 100

Now, all the error messages from the interpreter are intercepted
and re-directed. The program simply tries again. This is fine,
but the problem remains: the errors shouldn't be there in the
first place!

Data Storage Arrays

Types of Arrays
Captured data is generally held in array structures created

within HOSKY's very large memory. There are three types of
arrays

Simple Variables
Double Precision
Strings

Simple Variables are used for storage of decimal values of up to
6 digit accuracy.

Double Precision arrays store numbers up to 14 digit accuracy,
but use more memory.

NOTE: both these types store much larger numbers than indicated,
but only by truncating the least significant digits. For
example, the number 12345678 entered as a simple variable would
be stored and reproduced as 12345600.

String Arrays store every character, whether numeric or
otherwise, literally. They can have any number of characters
(up to a maximum of 255 characters in each string). Facilities
are provided for converting strings to numbers and vice versa.

Array Structures

Every array is denoted by a name and placed in memory in a
sequential table. Multiple arrays are packed in memory by Basic
and accessed via a Symbol Table.

Individual array elements are identified by the array name and
the element number, together with a character to identify the
array type. For instance: (NOTE: arrays start from element 0)
A(10) is the eleventh element of simple variable array A.

REV.HC10APR PAGE 108

3.8.2.3

Al(2) is the third element of double precision array A! (quote
different and independent from array A in the example
above) .

A$(0) is the first element in string array AS. AS$(0) is

) identical with A$, which can be used for shorthand-useful
if there are multiple references to a single string in
the program.

In each case, the number in parenthesis is the element number,
and can be variable:

AS(B)
or an expression:

AS (A*5)
or another array element:

AS((6))
Remember the element numbers start from 0!
Creating Arrays
HUSKY's designers have decided that all arrays used in
application programs must be explicitly declared in advance to
avoid overflow problems in the field, (much) later.
Arrays are created, and memory space reserved, using DIM state-
ments.
Arrays can only be created once: if a subsequent attempt is made
to re-define an existing array, an error occurs. This is to
warn the programmer that he may be accidentally duplicating an
array name.
NOTE: String and double precision variables must have array
space declared, even if there is only one element in use. For
example, the statement:

A$="123ABC"
is only valid if the statement: .

DIM A$(1,6)

has already been executed.

REV.HC10APR PAGE 109

3.8.2.4

HUSKY BASIC PROGRAMMING SECTION 3.8

Otherwise, an error message:
*Array Error
will appear.

Also, if the statement DIM AS$(1,6) is repeated at anytime then
an error message:

*Dimension Error
will appear.

This can be easily avoided by incorporating the DIM in a program
sequence that is only executed once, and subsequently branched
around. This is often called an Initialisation Sequence. A
typical format is:

10 IF z<>0 THEN 100
20 DIM AS$(1,6)
30 2=55

The variable Z is a flag, indicating that the program has been
run before. (All variables are cleared to 0 by CLEAR or any
change to program content, but not by power off or removing
batteries).

A slightly more sophisticated version is:

10 IF z<>0 THEN 100
20 DIM AS$(1,6)
100 7z=z+1 '

Where Z acts both as a flag and as a counter of the number of
times the program has been run, a very useful statistic!

Array Sizes

Arrays are limited in size only by HUSKY's memory space.
Remember that arrays compete with program for space, automatic-
ally allocated by HUSKY's operating system. Since the maximum
number of single precision simple variables possible in a 144K
HUSKY is approximately 28,000, array sizes will be less than
this number.

Array size allocation is simplified by self-sizing. For this
purpose, the Function FRE (Section 3.3.4.8) can be used as a
variable. FRE provides the number of memory bytes remaining as
follows:

REV.HC10APR PAGE 110

3.8.2.5

HUSKY BASTIC PROGRAMMING SECTION 3.8

After NEW : The total memory available
After program entry : The memory available for data
After array definition : The memory remaining

The number FRE can be used to automatically calculate the max-
imum number of array elements possible for any given array type
and to sign on informing the operator of this information.
Remember that a fixed space of 256 bytes is required for the
String Pool if string arrays are to be used. An example for a
simple variable array is:

10 IF Z<> THEN 100

20 N=2
30 Y=INT (((FRE(0)-7-N*7)/5)-1)
40 DIM A(Y)

100 PRINT "TOTAL NUMBER OF ELEMENTS AVAILABLE:",Y

Note that Y is taken as an integer (INT), that the symbol table
entry (=7) is subtracted, that the element size is 5 bytes and
that arrays start from zero, so the maximum number is one less
(-1).

N*7 is an allowance for the number of variables used in the
subsequent program, assuming 7 bytes per variable. Since both N
and Y are variables, N must equal 2.

NOTE: problems can occur if more variables are used than space
is provided for, since memory overflow is not checked when new
variables are declared.

A string array can be sized as follows:
10 IF 2<>0 THEN 100
20 N=2.
30 Y=INT (((FRE(0)-7-N*7-256)/15)-1)

40 DIM AS(Y,4)
100 PRINT "TOTAL NUMBER OF STRINGS AVAILARLE:",Y

Accessing Array Elements
Each element in a data array is accessible by its array index,
expressed in parenthesis, e.g:

A#(235)

is the 236th element in A#

REV.BC10APR PAGE 111

3.8.2.6

HUSKY BASIC PROGRAMMING SECTION 3.8

NOTE: array indexes must be within the range declared in the
corresponding DIM statement. HUSKY BASIC warns the programmer
of any attempt to access an element outside the declared range
with:

*Magnitude Error

Be especially careful with incrementing indexes like FOR NEXT
loops. For instance, the routine:

10 DIM A(10)

100 FOR N=1 TO 10
110 INPUT A(N)
120 NEXT N

is not OK, since there is no A(10). The program should read:
10 DIM A(10)

100 FOR N=0 TO 9
110 INPUT A(N)
120 NEXT N

Array indexes often have a direct relationship to external
variables, like stock codes. It is always preferable to
directly access an array in this fashion in the interests of
speed, rther than working sequentially through every element.

If there are discontinuities (gaps) in the existing codes, or if
the numbers are too large, a conversion table or algorithm may
be needed. Since a literal table (one entry for every code) is
likely to be very inefficient, it is generally worth putting
considerable effort into deriving an efficient 'tree' structure
for direct array access.

Array Searches
There is often a need to search an array for an element of known
content. In Basic, this procedure can be painfully slow.

One solution to this dilemma is to use a specialised machine-
code subroutine to search the array and return with the index of

‘the target element.

A much more practical method is the Basic function SRCH (See
section 3.4.67), which is not affected by Husky's paging
structure.

REV.HC10APR PAGE 112

3.8.3

HUSKY BASIC PROGRAMMING SECTION 3.8

Data Input Techniques
We are all familiar with the computer truism:

"Garbage in - garbage out"

Never was more true than in data capture applications where out-
of-range entries can cause fatal errors that are just embarrass-
ing in the office, but potentially disastrous in the field.

To help avoid the commonist forms of data entry error, HUSKY
provides a unique facility INPUT USING (Section 3.3.2.31).
Input using pre-filters incoming data against a predetermined
mask and rejects entries that do not fit at the keyboard,
warning the operator to try again.

Equally important to the user is optimum use of HUSKY's screen
to provide clear, unambiguous prompt messages and input fields.

The example program in section 3.8.5.6 inputs simple message
strings and holds them in a string array. The program first
prompts:

Please type message length (29 characters maximum):_

To which the user responds with a number of characters, for
instance '12°'.

HUSKY then responds with:

Total number of entries possible in this HUSKY iS..... and
then:

Please enter prompt message (up to 17 characters):

To which the user responds with a prompt. This might be, for
instance:

"Enter next name"

The program then requests entries in sequence, drawing an entry
field on the screen as it does so:

ENTER NEXT NAME [1

INPUT USING keeps all entries within the field.

REV.HC10APR PAGE 113

3.8.4

3.8.4.1

3.8.4.2

USING HUSKY'S SCREEN

HUSKY's large, 32 x 4 character, LCD screen can be used to
positive effect to help its operator. Because the screen is
entirely flexible, these notes are provided as a source of ideas
rather than as instructions.

This section refers to character—-by-character use : more
detailed information on direct dot addressing is available in
Section 4.3

Word Justification

HUSKY's screen control software automatically maximises screen
use and legibility by suppressing unwanted spaces and justifying
whole words that occur at the end of lines by moving them,
intact, to the next line.

These features are the key to using HUSKY as a terminal for
remote mainframes, where display data is intended for 80 column
or 132 column screens or printers. HUSKY's screen software
allows these formats to be read 'on the fly', avoiding the need
to re-configure the mainframe software.

When used with BASIC user programmes, word justification is
sometimes confusing at first. Text will not 'wrap around' the
end of lines as it would in a simple printer : neither will
leading spaces serve to position a message at the centre of the
screen.

The BUSKY Screen

HUSKY's screen is divided into 4 lines of 32 characters each.
Any ASCII character can be written to any of the 128 character
positions.

Character positions are denoted by X,Y co-ordinates as shown in
Fig.3.l. Note that the Y co-ordinate counts down from the top.

NOTE: The right-hand bottom corner position (31,3) is normally
occupied by the 'shift arrow'. Attempting to write to this
position simply causes the entire screen to scroll upwards,
since this is the last character on the screen.

In addition to the 7 x 5 dot matrix at each position, a separate
cursor appears under a specified position. The cursor can only
occupy one location at a time and is not available in the dot
programming mode.

REV.HCL0APR PAGE 114

3.8.4.3

HUSKY BASTC PROGRAMMING SECTION 3.8.4

Cursor Addressing

The cursor position can be commanded from a BASIC programme,
allowing subsequent characters to appear anywhere on the screen,
Because HUSKY's screen software suppresses leading spaces and
multiple line-feeds, this is the preferred way of building
screen formats.,

The format for cursor addressing is:

SI,X,Y
Where SI is a special cursor control character recognised by the
screen software and X,Y are co-ordinate values derived from
Fig.3. 1.
The standard BASIC format for cursor addressing is:

OFCHR 15,X,Y
Where OPCHR is the BASIC command (see Section 3.3.2.16), 15 is
the decimal equivalent of SI and X,Y are the co-ordinates

expressed in decimal.

NOTE: that X is taken modulo-32 and Y is modulo 4, but values
greater than 256 will give an argument error.

This sequence cannot be used in direct mode because BASIC re-
positions the cursor following the command!

REV.HC10APR PAGE 115

SECTION 3.8.4

HUSKY BASIC PROGRAMMING

L€ Of 62 82 L2 92 G2 e €2 ez le 02 6L gL LL 9L GL wL €L 2l LLOL68L9GHECLO

Fig.3.1

PAGE 116

REV.HC10APR

3.8.4.4

HUSKY BASTC PROGRAMMING SECTION 3.8.4

Lower Case
HUSKY's screen will support the full range of lower case
characters, as defined in Appendix I.

The standard keyboard layout does not support lower case in the
interests of simplicity, but can be easily programmed to replace
existing characters with lower case equivalents if required.
See Section 4.12,

The simplest method of producing screen formats with lower case
characters is to edit the programme text on an external system,
or to connect an external CRT terminal via the serial port (see
Section 3.3.1.1).

Lower case characters can also be generated by appropriate OPCHR
characters.

However, HUSKY's keyboard can be reprogrammed to generate
upper/lower case characters, as is shown in sections 4.12.4,
Keyboard 3. The use of lower case in pre-programmed prompt
sequences is strongly recommended to improve readability and
'friendliness' of the system.

REV.HC10APR PAGE 117

HUSKY BASIC PROGRAMMING SECTION 3.8.4

All HUSKY programmes generated at DVW feature a standard header
page that appears at switch-on and remains on the screen for a
fixed time or until a key is pressed. The header page supplies
vital information about the programme and use of this format is
strongly advocated to other users.

The appearance of the header page is:

Fig.3.2

DVWud450 01 Jan 1984 09:30:00
—*=h=*={ DEMO PROGRAM >#=h=+-
1000 hours use, 1000 Lines free
DEMPROG.1(GNA 13/12/82) 67401 |

-t b 0
b=t b= 0

This page was generated by the demonstration program presented
in Section 3.8.5.

Notice how the header page uses HUSKY's screen to the maximum
effect. Notice also that the clock display is 'active', i.e.
continuously updating. While this has the disadvantage of mak-
ing the keyboard feel 'slow' (because the time needed to re—
write the clock display is interleaved with keyboard scans), it
has the great benefit of assuring the user that HUSKY is
'alive'. See the next section.

REV.HC10APR PAGE 118

HUSKY BASIC PROGRAMMING SECTION 3.8.4

3.8.4.6 Dynamic Screens
A vital ergonomic factor in HUSKY program design is re-
assurance. Many, perhaps most, HUSKY operators have never
worked with any kind of computer before and are likely to have
some suspicion about this example of 'advanced technology'.

The crucial point is that HUSKY MUST COMMUNICATE WITH THE
OPERATOR. If it doesn't, he'll soon become frustrated at some
situation he doesn't understand and resort to 'traditional’
solutions - gently encouraging it with a series of sharp blows
or worse!

REV.HC10APR PAGE 119

HOSKY BASIC PROGRAMMING SECTION 3.8.5

N DEMIONSTRATION PROGRAMS

3.8.5.1 "General Program"
A very simple introduction to Husky programming.

3.8.5.2 "Clock Reading Program"
This program reads BUSKY's calendar clock.

3.,8.5.3 "Address Index Program"
A simple data storage program.

3.8.5.4 "Alarm Clock"

A complete application demonstrating many useful Husky utili-
ties.

3.8.5.5 "Input Field Format"
Demonstrates use of INPUT USING for screen formatted input data.

REV.HC10APR PAGE 120

3.8.5.1

HUSKY BASIC PROGRAMMING

GENERAL PROGRAM

190 R
20 R
30 I
40 C
50 D
69 2
120
119
120
130
140
150
160
170
189
130
220
219
220
1200
1219
1929
1236
2200
2210
2920
2030

EM DUW/PPA X 83,0383
ESTORE

F2<OBTHEN120

LEAR

IMAC2)

=1

OPCHR1

INPUT"ENTER 1ST. NUMBER :-"A(1)
INPUT"ENTER 2ND. NUMBER :-"A(2)
OPCHR1

PRINT"1=ADD"

PRINT"2=SUBTRACT"

INPUTYSELECT 1 OR 2 := "1
IFICITHENGOTO:60
IFI>2THENGOTO169
IFI=1THENGOSUB 1200

IF I=2THENGOSUB2000

INCHR, C

GOT0100

Y=A(1)+A(2)

CrCHRI

PRINTAT I, + ",4(2)," = ", Y
RETURN

Y=A(1)-402)

OPCHR1

PRINTACIY, " — ",A(2)," = ",7,
RETURN

REV.HC10APR

SECTION 3.8.5

PAGE 121

HUSKY BASIC PROGRAMMING SECTION 3.8.3

3.8.5.2 CLOCK READING PROGRAM

18000 A=CALL(223)

12019 A=PEEZK(17735)
10020
10032
10040
10859
12069
19070
12082 H=
122392
12120
12118 RE
191290 RE
19138 K=
12149
12159
12169

il

G Mmoo nw
i il

M IMZ AND DATE IS NOW IN
M UARIASLES A TO J
1
1
1
1

i

INTUTHE LAt IS LRGN, P
PRINT"THE TIMZ IS :",L,":",K, "HOUR

S !
12200 END

REV.HCLO0APR PAGE 122

3.8.5.3

HUSKY BASIC PROGRAMMING

ADDRESS INDEX PROGRAM

1@ OHEFFOF101D
Z0 IF«9<¢>999THFNGOTU100Y

3@ OFCHRI GFETHT "¥XX AUDKESS STORE XXX
40 PRINT"A = NEW B = SEARCH C = PRINT"
SB@ INCHRYENTER SELECTION:",A

60 IFA=66THEN202Q

70 IFA=6STHEN4Q0

80 IFN=67THENS0@

90 GOT020

280 OPCHRI1 : INPUI"ENTER NAME >"X$

219 FORN=QTO2

220 IFXs$=~As(N)THEN300

230 IFX$=Bs(N)THEN32O

240 1FX$-C$(N)THEN3OQ

250 1FX$=~Ds(NITHEN3BQ

260 NEXTN

220 OPCHR]

2802 1LOPCHR13,18, 18 :PRINT"NO OTHER RECORL
S FOUND™ :LLOPCHR13, 18, 1%

290 INCIR, 1:607030

3008 LPRINTNAS(ND :LPRINTES(N) :LPRINTCS(N) -
LPRINTOS(N) ILOPCIHRIZ, 10, 10

319 INCHR, 1 :0PCIIR]

320 601039

402 OPCHRI1 : INPUT"ENTER NAME >"As$(Z)

419 INPUT"ENTER 1ST LINE OF NDDRESS >"Bs
(2)

420 INPUT"ENTER 2ND LINE OF ADDRESS >'"Cs
rz)

43@ INPUT"ENTER LAST LINE OF ADDRESS >"I

$C22

446 2=241

450 GOTO03@

5@@ OPCIR1 :FORN=@T0Z

518 LPRINTA$(N) :LPRINTBS(N) :LPRINTCS$(N) :
LPRINTDS$(N) :LOPCHR13,18@, 18

520 MEXTN

930 GN10278

1aPa NIMne 05, 32),Bs050,32),0$(58,32),0%
[0, 327,%X%01,32)

ol UNERRUR IR @

1 <1099

19721 T 2m

REV.HC10APR

SECTION 3.8.5

PAGE 123

3.8.5.4

ALARM CLOCK

a]FlP>2THENGOSUB?@@iIU=ITlONPOHERGOTO?l

2

1 IFIP=1THEN250

2 GOSUBSS:PRINT"DUWUGBE" :PRINT" —k=k=%=<
title y=k=k=k~"

3 PRINTIB, :0PCHR15,4,2:PRINT" hours use,

“, :0PCHRI1S, 15,2 :PRINTID--D, "lines f[ree”

4 PRINT“{ilename.B(GNA 23-01,83)",

S POKE17832, 170:REM * ONERRORSO

10 IFIP=QTHENIY=PEEK(127825) :[2=PEEK(1782

6)

11 POKE 18497,17,90,78,33,0,0,6,0,253,33

10,72,26,79,9,19,123,253,190,0, 194,277

12 POKE 18519,72,122,253,19@, 1,194, 72,77

,253,33,2,72,253,112,0,253,1106, 1, 201

14 POKE 18432, 1Y, 1Z:1X=CALL184927) s [X=Ft

EK(18434)+256¥PEEK(18435)

1S IFIP=@THENPRINT" CHECKSUM=", IX:IW=1x:

GOTO196

17 1FIP=1THENOPCHRI1S,31,8,65,”7

18 OPCHR1S, 24,3 :PRINTIX, :0PCHR1S5,8,3:1~1

(4)%4B+1(3):0UT132,1

20 IFI>S@3THENPRINT % & s MERRY CHRISTR

AS k",

21 IFICSOTHENPRINT"% % * % HAPPY NEL YEA

R X",

25 J=INP(2):0UT132,0:1FJ-8%xINT(J/8)<4THE

NOPCHR?, 7, 7 :PRINT " ¥WARNING, LOW BATTERIES

Ot '

28 IFIX=THTHENA®G

29 PRINT LM, "SELFTEST”

30 PRINTY FATLURES", :OPCHR?, 2,7, 2y

a4 GOSUBYB: 16

42 1feCALLCR26) 1 T=1+1 1 1F1>42THENIBY

44 [HKEY [A=0THENA?2

4% GOT0O8s]

S0 OHERRORSAGOTO 36

REV.HC10APR

PAGE 124

HUSKY BASIC PROGRAMMING

90 1=255:G0T092

81 I=8

92 POKE1?66S,1:1=CNALL(22@) :RETURN

98 PRINT">":0PCHR1 :GOSUBS] :PRINT#2x :ONBR
EAKGOTOS0B :HELP45@ :RETURN

180 INPUT"HUSKY S/N=7?",[S:POKE12724, 1:PR
INT" WAITO",

118 DIMIC9),10(32),104(2,208),IM$(0, 180,
[$02; 283 1180)etemrrnn ¥ 2 [$(2)="PLEASE "
111 T0$(8)="Fuiuredatsa,LS] etc, " :10(0)=6
FI0C1)=6:1002)=1:1003):1:10(2)=1:10(9)=1
1860 ID=INTUCFRECB)-1998),5) :IF1D> 16863TH
ENID=16000

191 DIMDCID)

199 IF=42:POKE122724,8:G07T00

200 I=CALL(223) :FORI=1TO5:10(1)=]10%PEEK(]
2734+ 1+1)+PEEK(122793+1+1) :NEXTI

201 IT=I1(2)+1(1)/60:RETURN

219 GOSUB200:IFITY> IUTHENIB=IB+IT~IU

211 IFIP=1THENOUT?9,12

212 0OUT131,8

215 GOSUBYII

220 GOSUB2@@:PRINT"@=CANCEL" : INCHR"1=SET
Yo 1 :OPCHRIB: IP=1:1FI1<>49THENIP=42:G0T092

1 FORI=ITO4:I1(I+5)=1C1):NEXTI :GOSLIBIO :
NPUT"MESSAGE : *, IM$:0PCHR1, 15,8, |

2 GOSUBS1:1=CALL(226) : INPUT"MINS(2-592
L TCB) S INPUTY HOUR:(1-24):7%,1(2)
223 INPUT"DATEC1-31):%,1C8):INPUT" MONT
H(1-121:7,1(9):G0T0210

258 IFIC3)=I(8)THENIFI(4)=1(9)THENIFIr2]
=IC22THENIFIC1)=>1(6)-1THEN283

269 I1FPEEK(122723)=2THENOUT?3,12:0UT131,@
269 GOTOZ

280 OPCHRI;?,?;7;7ZPRINTIN$1INCHR,IIIP:4
2:G0T02

N = N @
N

N

REV.HC10APR

SECTION 3.8.5

PAGE 125

HUSKY BASIC PROGRAMMING

400 PRINT'Husky ser#",IS,

4@l OPCHR1S,16,1:PRINT"Prog.bytes ", PEEK(
17825)+256%PEEK(17826)-1Y-256%12

42 PRINT"Capacity ",1D, -OPCHR1S,16,2:FR
INT“"Free bytes",FRE(B)

404 PRINT"Lines used",D

406 PRINT"Alarm at ", 1(2),1(6)," "on",1(8)
s 103),; (5],

4B9 G0T0200

DON’T PANICY =======

452 REM
460 REMUse up/down arvows to view HELP

461 REMPress Epter to resume work, ..

4652 Kk Mo re e Lo e wien

463 REM etc

588 LOPCHRI13:G0SUB9I:PRINT"@=Program’ PR
INT®1=",10%$(@):PRINT"2=", [0%(1) :PRINT" 3=
Ty 10%(2),

S18 INCHR, I:1=1-49:]FI<KBTHENS5Q

512 IFI>2THENSB®R

520 GOSUBS38:G0SUBI3:RETURN

538 FORIC=QTO1@:POKE17888+IC, 10CIC+1ix]]
SNEXTIC:IC=CALL(229) :RETURN

550 GOSUBRI9:INCHR"Code (1to3)? i
9:0FCHRI3: INPUT"Descriplion? ', I
56@ GOSUBS3@:0PCHR1 :1C=CALLI241)
578 FORIC=BT012:10CIC+]1 1%)=PEEKC1Y3
TIC:GOT0580

a

9.
602 GOSUBSA0:60SUBB3G :LFRINTISI1]

512 LFRINTD:FORIC=BTOID L FRINTDCICT sz
IcC

6520 LPRINTIS(1):0UT132,2:0PCHRY, 2,7 1@ 1
:GOT0Z

[a1a]

S0 GOSURSO0:GOSUBEIS . IFI$(2) O T THENIBE
66@ INFUTIS$:CRCIIRY : (1) O IS THENGB?
670 INPUTD:F . INPUTDOTEY sNEXTIC
680 INPUTI®: FI#01) O ISTIHEN3Z

REV.HC10APR

SECTION 3.8.5

PAGE 126

HUSKY BASIC PROGRAMMING

683 0OPCHRZ,?7:G0T0S@0

688 INCIHR"Press Enter when ready to send
2y T iRETURN

6395 IFIR=BTHENOPCHRY, 7,7 :FRINT"DATA NOT
PRINTEDO"

636 I+ 10=BTHENIFCHR?, 2 PRINT"DATA NOT ST

CHRIZ, 2:FRINTYHARNINGY Data loss i
mminend &

639 GOSUB32: INPUT"Enter password:", [$:RE
TURNM

ABETNCHR U ES DEC 1 DECY HER T 2 [F 12497
HEN 25

265 GOSUBOL :PRINTYENTER 4-DIGIT HEX:",
712 GOSUB?Z0:IH=] :GOSUB?20: 1J=1 :GOSUBY20
CIK=1:GOSUBY20:TIL=]

715 PRINT4Q96XIH+256%] J+ 16X IK+]IL :GOTO2ES

SECTION 3.8.5

’2a
721
225

[FI>B65335THEND 25

INCHR, I 2 1=1-48:1FI>3THENI=1-2
RETURN
OFCHRIZ: INPUT"DECIMAL (B-6553517 . 1:

720 4096 :PRIN Ya - TFIKBTHEN?2S

735 IC=1TO04:TA=INT(I/1J) :GOSUB?45 : 1=]
-TJ% J=IJ /716 :NEXTIC :60OT0Y25

743 IN+48 TR IKDSP2THENTK= 1K+

247 OPCHRIK :RETURN

75@ WINPUTI® :GOTO?SR@

760 IH=INPCIS3):IL=INP(192) :PRINT "H=", 11!
VLt T

2ea

Ty "HiL=", TH¥ 256+ 11 :GOT026@
39 TNCHR, INn

301

264

265

866 [B=@:560T02

862 I-CALLI235):60T09%6
862 IR~2:10=8:60T0320:0
878 GOTO400

REV.HC10APR PAGE 127

HUSKY BASIC PROGRAMMING

873 GOTO1000

877 GOTO9BG

880 GOT0Z2080

882 GOT06508

883 GOT060A

884 GO10760@

885 GOT0N9508

887 GOTO?50

30TO?RG

ROGLIBA9 :ONBREAKGOTOZ
91@ PRINT"U=UTILITIES

911 PRINT"I=INITIATE
912 FRINTUP=PRINTOUT

913 PRINT"O=DATA IN
", 1070800
927 GOT0SBB
959 FRINT"A=Alarm M=Main Menu W=kland tles

&
L

951 PRINT"B=Batt’ R=Receive X=heX/dec"
952 PRINT"C=Clock S=Send data Y=

port &=

953 PRINT"F=Facts T=
", :G0T08VG

SUBB9S: 1FI$(2) <> I#THENIRD

=@TOID:PRINT > ", :DCI)=BNEXTI 0

TIME:", 102),101) :L.PRINT "HUSKY#™, IS
22@ FORI=BTOID

@ LPRINTI,OCI)

QG NEXTI

R=1:0UT132,@:6G0T0%90

PRIMTY

REV.HC10APR

SECTION 3.8.5

PAGE 128

HUSKY BASIC PROGRAMMING - SECTION 3.8.5

3611 PRINT"
3212 PRINT®
3813 PRINT"Linet",0,

3 INPUT.DCDD :D=P+]
1399 GO102080

W W

REV.HCLOAPR PAGE 129

HUSKY BASIC PROGRAMMING SECTION 3.8.5

3.8.5.5 INPUT FIELD FORMAT

100 REM INPUT FIELD FORMAT DEMO

110 IF 7<>0 THEN 300

120 INPUT USING ("99",1,2)"PLEASE TYPE MESSAGE LENGTH (29
CHARACTERS MAXIMUM):",L

130 IF L=0 THEN PRINT "SORRY, CANNOT BE ZERO!":GOTO 120

140 IFL>29 THEN PRINT "LINE LENGTH EXCEEDED:PLEASE RE-
ENTER":GOTO 120

150 S=(FRE(0)-1000)/(L+1)

160 PRINT "TOTAL NUMBEROF ENTRIES POSSIBLEINTHISHUSKY IS",

170 S=INT(S)

180 PRINT S

190 DIM PS$(1,32)

200 DIM D$(S,L)

205 TIF 32-L-3=0 THEN 250

210 PRINT "PLEASE ENTER PROMPT MESSAGE (UP TO",

220 PRINT 32-1-3

230 PRINT "CHARACTERS):",

240 INPUT USING ("*",,32-L-3),P$

250 2=55

260 Y=1

300 REM SCREEN ADDRESSED INPUT FIELD
310 FOR Y=Y TO S

320 OPCHR 1

330 OPCHR 15,10,1

340 PRINT "ENTRY NUMBER",

350 PRINT Y

360 OPCHR 15,0,2

370 PRINT PS$,"[",

380 FOR N=1 TO L:PRINT " ",:NEXT
390 PRINT "1",

400 FOR N=1 TO L+1:0PCHR8:NEXT
410 INPUT USING("*",1,L),DS(Y-1)
420 NEXT Y

REV.HC10APR PAGE 130

HUSKY BASIC PROGRAMMING o SECTION 3.8.5

MOTES:

ig "99", nuaeric values onlv.
of zerc is not i
cn cf 1919

bo s 2llow or ztring sool

x error' would oczur in

no: zero.

REV.HC10APR PAGE 131

3.9

3.9.1

3.9.1.1

3.9.1.2

HUSKY BASIC PROGRAMMING SECTION 3.9

OFF-LINE PROGRAM STORAGE

Most HUSKY applications require storage of users BASIC source
programs in an easily accessible bulk-memory system for support,
updating, exchange and maintenance.

One very popular method of storing HUSKY programs is in users'
multi-access mainframe database systems, although minis, micros
and other HUSKYS are also used extensively. HUSKY's ability to
communicate freely with these other systems is vital to support-—
ing its programing and application.

This section deals with both manual and programmed source code
loading and unloading using BASIC's complimentary LLIST and
LLOAD commands. Other methods of transferring programs, e.g.
'CLONING', are dealt with elsewhere.

LLOAD

LLOAD is the command for loading BASIC source programs into
HUSKY. It may be used to load entire programs or to modify
existing ones by appending or overwriting lines.

LLOAD can be used with any of the communications protocols
detailed in part 5, '"COMMUNICATIONS', with the exception of
Intel Hex, which is reserved for object code only. Certain
speed/protocol limitations are detailed below.

Manual Control

To enter program lines, simply type 'LLOAD' followed by carriage
return. HUSKY will then load to memory source text presented on
the serial port and echo the input on the screen. Note that
syntax is checked on a line by-line basis and that if an error
is detected, the LLOAD will terminate and a 'Syntax Error' will
be displayed on the screen.

If the program provided overflows the memory space available, a
'Storage Overflow Error' will appear. An acceptable shorthand
for LLOAD is 'Control Enter', (see Appendix III), which has the
same effect.

LLOAD mode can be terminated by pressing 'ESC' on the HUSKY
keyboard or 'power off'. (Data will not be lost).

Alternatively, an 'ESC' character sent over the interface will
return control to the keyboard.

Programmed Control

Logically, it is difficult for a program to append to or modify
itself, since the sequence controlling the modification may be
modified as well! However, HUSKY programs can contain sequences
that will command a remote processor to send program text and

REV.HC10APR v PAGE 132

3.9.1.3

then accept that text as BASIC source.

Current versions of HUSKY BASIC do not support LLOAD as a
program statement, e.g. 100 LLOAD. This situation will be
rectified in future releases. However, the 'Logical Keyboard'
Flag (See Section 4.1.4) has the same effect as LLOAD and can be
commanded in a program as a 'POKE' instruction. By setting the
flag to the serial input port and then returning to interpreter
mode, HUSKY is configured to accept new program lines. These
lines may overwrite the lines originally used to enter the LIOAD
mode.

Loading may be terminated by sending an unnumbered 'RUN' state-
ment which will cause execution to re-commence from the start of
the new or updated BASIC program, making the load sequence
virtually transparent to the operator.

A possible program format might be:

100 REM Program reload routine

110 INPUT "Please enter new program name", X3$

120 IPRINT "Hi there, mainframe. Please transmit file name",

130 LPRINT X3$

140 POKE 17664,1 : REM This sets the logical keyboard asthe
serial input port

150 END : REM Returns control to the interpreter

.The new program lines now load

.The last line transmitted is unnumbered RUN, which executes

10 POKE 17664,0 : REM Restore the logical keyboard
20 PRINT "New program loaded OK : Continue?"

HUSKY's input buffer ensures that the first line of program is
captured, no matter how quickly the distant computer responds.

IMPORTANT NOTE .

In present versions of the HUSKY operating system, any
alteration to program content, including deletion of lines,
automatically clears all variables and arrays. This is
essential to HUSKY's operation, but means that data cannot be
car1ied acress reload boundaries.

REV.HC10APR PAGE 133

3.9.2

HUSKY BASIC PROGRAMMING SECTION 3.9

LLIST
LLIST is the principal method of copying and recording HUSKY
programs. Other methods, e.g. 'Cloning', are not described
here.

Invoking LLIST causes program lines to list sequentially from
the lowest line number or from a line number specified as an
argument in the LLIST. Examples are :

LLIST Lists an entire program

LLIST 170 Lists from line 170

LLIST 2133 Lists from 2133 or, if 2133 does not exist, from the
next highest line.

LLIST terminates when all line numbers are listed, when 'ESC' is
pressed or when HUSKY is powered down. Data will not be lost if
HOSKY powers down during a listing.

LLIST cannot be incorporated in a program, and is only available
for manual use.

Protocol and format selections made in HUSKY's communication
package are observed transparently by LLIST. Carriage Return
terminator characters are provided at the end of each program
line, line feed and null characters are optional.

IMPORTANT NOTE

Remember that HUSKY's communication system needs to power up to
its RS-232 state for transmission to occur. This power-up will
cause an off-to-low transition that many systems will read as a
single, spurious, character. This event only occurs once and
can be avoided by powering up the interface prior to activating
a receiving device. Methods of pre-powering the interface
include :

IPRINT " " : REM the interface powers up automatically
OUT 132,1 : REM Direct control of the communications inverter

Remember that once powered up, the RS-232 output remains active
until HOUSKY is powered down or the inverter is commanded 'of £'
by :

our 132,0

HUSKY power consumption increases substantially during RS-232
transmission with corresponding reduction in battery life.

It should be noted, however, that if the RS232 line is powered
off further serial transmission will be lost unless the inter-
face is powered up again, by:

ouT 132,1

REV.HC10APR PAGE 134

3.9.3

3.9.4

3.9.4.1

HUSKY BASIC PROGRAMMING SECTION 3.9

NOTE: The interface will not power-up automatically with a
simple LPRINT statement with no arqument.

Speed/Protocol Limitations

It is always advisable that some form of protocol handling is
established between HUSKY and associated computers.

Some multi-access mainframes and some popular microcomputers are
unable to support any form of protocol, however.

In these cases, HUSKY will generally support direct program
transfer at speeds of 300 baud or less. At higher speeds,
HUSKY's input buffer may overflow leading to loss or truncation
of lines. At 300 baud, the buffer smooths the flow of incoming
program through HUSKY BASIC's syntax checking routines.

Problems with truncation will invariably lead to the load
operation being aborted and a 'Syntax Error' message being
displayed, since the Interpreter will not accept partial lines.

The capability of supporting simple 300 baud communication is
invaluable in many situations.

Communications with Databases
A very useful HUSKY feature is the ability to communicate
directly with mainframe databases using 'VDU mode'.

This interactive mode can be used manually to establish logon
procedures, passwords, etc., before attempting to transfer or
copy files or inspect data.

Sequences proven out manually can, in most cases be implemented
in HUSKY Basic as automatic features of the user's program once
protocols, etc, have been finalised. Such sequences can present
inputs to the mainframe and inspect the reply for keywords like
'READY' or simple cursor prompts.

NOTE Many mainframes are unpredictable in the response they
provide to login sequences, with variable 'welcome' or 'news'
messages. Make sure your automatic sequence is robust enough to
handle these eventualities!

Some general points about database communications should be
noted:

Rate

Communication occurs generally at 300 baud, although other
configurations are possible. At this speed, HUSKY'S screen
handler will give a 'line-by-line' presentation that can be read
'on the fly', even if long pages are involved. Remember that
the screen character generator will display all ASCII
characters, even if they are not shown on the keyboard.

Other rates encountered on dial-up systems are 110 (very rare)
and 1200, but only with sophisticated modems.

REV.HC10APR PAGE 135

3.9.4.2

3.9.4.3

3.9.4.4

3.9.4.5

3.9.4.6

HUSKY BASIC PROGRAMMING SECTION 3.9

Parity

Dial-up systems can expect any of even, odd or no parity
selections. Transmit and receive parities are generally the
same. Always use receive parity if it is available - the
occasional appearance of the parity error symbol is a useful
indication of bad lines. Remember that telephone lines can be
bad in one direction only.

Full/Half Duplex

Database systems vary widely in the use of full or half duplex
operation.

Full duplex occurs when the host system 'echos' every received
character back to the HUSKY. In this mode, HUSKY's transmission
echo should be selected '"off' so that characters typed on the
keyboard only appear on the screen if they have completed the
whole circuit of HUSKY - Mainframe — HUSKY. BASIC routines can
check full duplex replies as an absolutely secure communication
protocol, provided the mainframes' own messages don't confuse
the issue.

If the echo switch is left 'on', double characters will appear
on the screen. This in no way affects communication, but makes
outgoing messages hard to read!

Half duplex occurs when the host does not echo characters back
to HUSKY. In this situation, the echo switch should be ‘on' to
allow outgoing messages to be read by the operator. This method
does not guarantee that data sent to the host is being correctly
interpreted.

A third mode, Simplex, occurs when data is sent in only one
direction at one time and is otherwise similar to Half duplex.
HUSKY is not concerned which mode is in use.

Protocol

Unfortunately, very few dial-up databases support any kind of
protocol, so that generally HUSKY'S 'none' option should be
used. Note that 300 baud is the fastest recommended speed for
no protocol program loading.

However, some systems do support 'XON/XOFF' although implement-
ations vary between computers - seek advice from DVW if
difficulty is encountered.

Other Parameters

The setting of 'NULL' and 'LF' are generally not material in
mainframe communication, so that '0' is recommended for NULL
count. See below for LF.

Terminator

HUSKY'S 'ENTER' key generates CR (Carriage Return), but some
mainframes expect other terminators. Examples are Control C and
IF (Line Feed), or 'New Line'. Consult your computer manual for

REV.HC10APR PAGE 136

3.9.4.7

HUSKY BASTC PROGRAMMING SECTION 3.9

details.

Delete

HUSKY'S DEL (Delete) key generates 'rubout'. Few mainframes
recognise this, or in many cases allow any deletion at all!
'Back Arrow' (—-) may work in some cases.

3.9.4.8 Acoustic Couplers

3.9.5

Good quality communication can often be achieved over surprising
distances with acoustic couplers at 300 baud, but this method is
not recommended for routine daily use.

Extra Documentation Lines

It is worth knowing that source files kept on computer systems
may have further documentation within them by using unnumbered
'REM' lines, e.qg.

100 PRINT "HELIO"
REM This line of text will be ignored and will only load line
100 into the HUSKY. This prevents loading unnecessary text.

Naturally, these lines can only be created on the host or data-
base computer.

REV.HC10APR PAGE 137

- HUSKY BASIC PROGRAMMING w0 -~ SECTION 3.9.6

3.9.6 IBM and Similar Editors
Some mainframe editors are confused by multiple carriage returns
generated at the start of an "LLIST" sequence. An exa'mple is to
supréss 'LF'.when listing programmes to VM370 IBMrunning under
CMS operating system. (Husky generates a CR/LF sequence to
provide initial formatting in printed listings).

At the very start of program to be dumped put a single line
program as follows:-

10 LOPCHR73:POKE19765,1:A=CALL (5249)=END

Output I prefix Suppress Call to LIST program
for editor LF's

User types 'RUN' to dump the program.
Format : A
I 20PRINT"HELLO" CR 30PRINT"....c..
The above will only work with HC0103/HC0104 firmware revisions as
it relies on knowing the location of 'LIST' in the operating

system. Contact the factory for assistance if your revision does
not match up with the above.

REV.HC10APR PAGE 138

APPENDIX I

HUSKY BASTC PROGRAMMING

—
L
[7p)
(o=
|
2
(e
<
oI
o
O
%)
<C

L2l 13 LLL o |G — | 6L 0 €9 i Lh / Le SA | Sl IS | Lttt 3
92L ~ | oLt u | n6 Vo8l N |29 < |9 . 03 | hL 0s | ottL 3
saL { | 601 u | €6 L |2 Wl 19 = | o - |62 O | €l 40 | LotL a
heL | | goL T |26 N |9 T |09 > | oh . 82 sd |atl 44 | oott 2
gzl } | Lo A |16 1 |sL x| 6s Yol e + L 0s3 | LL IA | Lol q
2zl z 90L o6 A L ro|gs : ch * 92 ans | oL 47 | otot v
L2l £ soL T |68 X €L I LS 6 Lh ((4 W |6 IH | 100l 6
ozl X oL Yy |eg X |eL H |9s 8 | on) ne NYD |8 s€ | oool 8
6LL M €oL 3 |1lg M LL o SS L 6€ i €2 a3 | L T3 | LLLo L
gLl A | 2oL J |98 A | oL 4 | ns 9 8E ? | NAS |9 3V | oLLo 9
LLL n LoL 2 | qg n |69 I |€s S | Le % |12 q¥N | G ONI | L0L0 S
9Ll 3 oot P |8 1l |89 a |es ho{9€ = ¢ |o2 "od |t 103 | 0oLo h
SLL s 66 o | g8 s | L9 2 LS € 49 % |6l € | € XI3 | 1100 €
Ll J 86 q |28 4 |99 g |05 2 | he u 8L 2 |2 XIS | 0L00 2
€Ll b L6 e (18 o} S9 v 6h L €€ i Ll 1oa |t “HOS | L00O L
2Ll d 96 v | o8 d 9 8 |sgh 0 |et s |91 a4 |o TN | 0000 0
03(q JeyD | 09q Jey)y | oaq Jdeyd | 98q Jey) | oaq JdBeyy [03q ueyp 930 Jey)y | DOaq Jey)y

Lt oLt Lot [ole]} L0 oLo 100 000 as1

') 9 S h € 2 L 0 aswW

PAGE 139

REV.HCLOAPR

HUSKY BASIC PROGRAMMING N . - APPENDIX IT

HUSKY IMPLEMENTATION OF CONTROL CODES

The HUSKY keyboard implements alphabetic ASCII control
characters which are obtained with control and an alphabetic

key.

The LCD display control software will respond to some of the
control codes to provide specific functions, any other control
characters received are ignored. The characters may be sent to
the display either from user programs or via the serial port.

a)

b)

c)

d)

e)

£)

q)

Clear Screen Decimal value : 01 ASCII : SOH

This code clears the HUSKY screen, apart from the shift
arrow, and places the cursor at the top left character
position.

Bell Decimal value : 07 ASCII : BEL
This character causes the HUSKY's internal sounder to
bleep, for use as an audible warning.

Cursor Back Decimal value : 08 ASCII : BS

Moves the cursor one space to the left. It does not affect
any characters on the screen. If the cursor is already at
the top left of the screen then there is no effect.

Cursor UP Decimal value : 11 ASCII : VT

The cursor is moved vertically up one line, if the cursor
is already at the top of the screen then there is no
effect.

Forward cursor Decimal value : 12 ASCII : FF

This character moves the cursor one position forward unless
the cursor is at the bottom right of the screen in which
case the screen is scrolled.

Carriage Return Decimal value : 13 ASCIT : CR

The command performs the usual carriage return, line feed.
The effect varies dependent on the position of the cursor
on the screen. If there are no characters on the line then
the command is ignored, to maximise the information content
on the screen. If the cursor is at the bottom line then
the screen is 'scrolled up' to provide a blank bottom line.

Down cursor Decimal value. : 14 ASCIT : SO

Similar to carriage return except that the cursor moves
vertically down and is not necessarily placed on the left
of the screen. Also, the function is always implemented
even if there are no characters on the line. The screen is
scrolled up if the cursor is already on the bottom line.

REV.HC10APR PAGE 140

HUSKY BASIC PROGRAMMING APPENDIX II

h) Cursor addressing Decimal value : 15 ASCIT : ST

This is the cursor addressing character. It signifies the
start of a three character sequence consisting of first
itself, followed by the X coordinate and then the Y
coordinate. The values used for X and Y can be any in the
ASCII range O0-7FH. However, X is taken modulo 32 to
define the character on the line and Y is taken modulo 4 to
define which line. See section 3.10.3.

i) Delete Decimal value : 127 ASCII : DEL
Acts just as cursor back but erases the character on which
the cursor lands.

The keyboard implements all standard control keys.
There are further functions used to control the HUSKY
directly.

a) Control Enter

Holding the control key down and pressing Enter causes the
HUSKY to receive characters from its serial interface
rather than the keyboard. This function is identical to
BASIC's LIOAD. Its function is, for example, loading BASIC
source from an external serial source such as a disk based
microcomputer. It should be noted that handshaking needs
to be used if BASIC programs are being loaded to prevent
characters from being lost at speeds greater than 300 baud
(Typical).

Control is returned to the keyboard upon pressing ESC.

b) Control Delete
This function suppresses the sounder during keyboard
operations. Pressing Control Delete once suppresses the
sounder, pressing it again re-activates the sounder.

There are some further keys which return control codes not
currently implemented on the HUSKY, or which have special
functions:

a) ESC Decimal value: 27 ASCII:ESC
Used to break into a running BASIC program. Requires entry
of the escape code if HUSKY is in auto-start mode, see
Section 3.1.4

b) ONTL BELP Decimal value: 28 ASCII:FS
Used to escape from VDU mode.

REV.HC10APR PAGE 141

HUSKY BASIC PROGRAMMING B APPENDIX II

c) INSERT Decimal value: 30 ASCII:RS
Not curently used

d) BREAK Decimal value: 31 ASCII:VS

Used with ON BREAK command, see Section 3.3.4.16 for
details.

REV.HC10APR PAGE 142

ADVANCED PROGRAMMING

HUSKY ADVANCED PROGRAMMING

4.1 MEMORY MAP

4.2 SYSTEM FUNCTION CALLS
4.3 THE HUSKY SCREEN

4.4 HELP

4.5 THE PARALLEL PORT

4.6 SINGLE BIT INPUT PORT
4.7 THE ON/OFF KEY

4.8 CLONING HUSKY

4.9 MACHINE CODE PROGRAMMING
4.10 PORT ALLOCATIONS

4.11 PANIC

4.12 PROGRAMMABLE KEYBOARD

APPENDIX I NSC800 MACHINE CODE
APPENDIX II BASE CONVERSION — HEX/DECIMAL

g

4.1

4.1.1

HUSKY ADVANCED PROGRAMMING SECTION 4.1

General

HUSKY memory can be expanded in reqular increments up to a
maximum storage size of 144K bytes. The memory is physically
organised into four pages as shown in the diagram.

Fig.4.1
FFFF 48K 80K 112K 144K

g RAM RAM RAM RAM

§ €000 32K 64K 96K 128K
©

% RAM RAM RAM RAM

£ 8000 16K

[}

173

g RAM

he)) T NOT NOT

; 4000 oL USED USED

g ROM

Q

=

PAGE O PAGE 1 PAGE 2 PAGE 3

NOTE: Not all the memory options shown here are available as
standard products. Please consult a current price list for
details.

In order to give users the full benefits of this large memory
potential without any of the complexitites involved in paging
memory, the operation involved in paging memory within the HUSKY
is entirely transparent, being handled by the resident operating
system.

FIRMWARE REV.HM22SEP.0 PAGE 1

4.1.2

HUSKY ADVANCED PROGRAMMING SECTION 4.1

RAM Memory Map

In considering the RAM allocation we shall only be dealing with
Page O RAM, which contains all the HUSKY operating parameters.
Extension RAM merely extends the space for use by BASIC.

Fig.4.2
8000
7000
6000
©
£ 5000
[$]
(5]
8
S 4000
T
£
g
= O/S Usage
i)
<
&
[o]
£
()
= 4000

RFTRMWARE RFV_AM22SREP_0

To further extension

< Limit for 16K HUSKIES

<« Limit for 4K HUSKIES

PAGE 2

HUSKY ADVANCED PROGRAMMING SECTION 4.1

Expanding the memory used by the 0/S we have:

Fig.4.3
4000
BASIC INTERNAL
4908
Communications
buffers
4800
ASCII
SCREEN
4700
E BASBUF & COMMS
2
g 4600
T O/S Variables
T 4580 rial
2
g 4500 Area cleared on
E power-on
g STACK
£
Q
2 4400
BIT MAP OF LCD
DISPLAY
4000

FIRMWARE REV.HM22SEP.0 PAGE 3

HUSKY ADVANCED PROGRAMMING - : SECTION 4.1

As can be seen there is fixed usage of RAM of CO00 (Hex)
bytes (3K) leaving, in a 144K machine (actually 147,456 Bytes),
an actual 144,000 bytes for program and storage.

FTRMWARE RFV_AM22SEP.0 PAGE 4

HUSKY ADVANCED PROGRAMMING SECTION 4.1

4.1.3 HUSKY Internal Storage Allocations

i) Bit map of LD display. The ICD display extracts the
dot information directly from this RAM area. Do not
attempt any operation to this area of RAM.

ii) The stack is between 4400H and 4500H. Under no
circumstances should this area be altered.

iii) The RAM from 4500 and 4580 is cleared on switch- on.
Some of the variables in this area are detailed later.

iv) From 4580 to 45FF are variables which are not cleared
on power on. Some variables are detailed later.

v) From 4600H to 4700H are internal variables and should
not be altered.

vi) ASCII screen:

This area of 128 bytes from 4700H to 4780H contains
the ASCII mirror of the display. It is possible to
read from the screen by addressing this area. If
characters are written to this area, then they will be
displayed if the screen refresh function is executed
(or the characters are written normally to the screen
causing it to refresh).

vii) Communications Buffer:
This area from 4800H to 4908 is used by the
communications package as buffers.

viii) The area from 4908H to 4CO0H is used internally by the
Basic interpreter, and should not be used.

ix) 4COO0H upwards is program store for Rasic or user
loaded programs.

4.1.4 Useful Memory Locations

These following locaticns may be useful (to 'PEEK' or 'POKE' to)
in Basic to provide the desired response.

FIRMWARE REV.HM22SEP.0 PAGE 5

MEMORY LOCATIONS

ADDRESS NAME FUNCTION
DECIMAL | HEXADECIMAL
18176| 4700H SCRNBUF The ASCII screen buffer organised as:
-18303| -477FH 4700H=Top left corner
477FH=Bottom right corner
Note 1
17664 4500H IPFLAG Logical Keyboard flag:
OH=Husky keyboard
1H=Serial I/P port
17665 4501H FSHIFT The keyboard shift key:
OH=Number or upper shift
OFFH=Letter or lower shift
Note 1
17666 4502H CURADDR The cursor address register contains
a number from OH to 7FH designating the
current position.
Note 1
17667 4503/ VECTOR The HELP vector address (see Note 3)
4504 See section 4 on use of HELP.
17704 4528 QUIET Setting this byte non-zero turns off
"automatic" bleeping of the keyboard.
17723 453BH APHRO This byte holds the method by which
power—up took place.
0 = Manual, thro' keyboard
1 = Serial port
2 = Automatic via clock
17724 453CH NYMPHO If the standard power down routine is
used then setting this byte non-zero
will inhibit operation of the power off
key.
Note: This byte is cleared on power-up.
17727 453F FOREVER Setting non-zero prevents auto-
matic switch-off after time out.
17756 455C PAGE This byte holds the page of either
program or data being accessed.
17792 4580 TENTHSEC Time Memory 1/10 sec
17793 4581 UNITSEC o " unit secs

DTDALADE DIX7 aD)90eD N

ADDRESS NAME FUNCTION

DECIMAL |HEXADECIMAL

17794 4582 TENSEC " L tens secs

17795 4583 UNITMIN " " unit mins

17870 45CE PDEF The page of definition storage is helé
in this byte.

17871 45CF PLIM Start of array definition page.

17874-| 45D2- ENDBAS Address of the very last byte of BASIC

source,|

17875 45p3

17876—-| 45D4- STRBAS Address of start of BASIC source.

17877 45D5

17879-| 45D7- BASE Start of memory used either for BASIC or

17880 45p8 user machine code. 1If there is nc
machine code then BASE=STRBAS.

17796 4584 TENMIN Time Memory tens mins

17797 4585 UNITHRS " " unit hours

17798 4586 TENHRS " " tens hours

17799 4587 UNITDAY " " unit days

17800 4588 TENDAY " " ten days

17801 4589 UNITMTH " " unit month

17802 458A TENMTH il " tens month

17803 458B UNITYR " " unit years

17804 458C TENYR " " tens years

17808 4590 TXSPEED Set serial O/P baud rate:
0=50 baud 3=150 baud 6=1200 baud
1=75 baud 4=300 baud
2=110 baud 5=600 baud
See Note 2

17809 4591 RXSPEED Set serial I/P baud rate (same as TX)

17810 4592 CTSAF The 'CTS' enabled flag:
0 =no 1= yes

17811 4593 RTSAF The 'RTS' enabled flag:

) 0 = nol= yes
17812 4594 TXPTY Transmit parity flag:
= none 1 = odd 2 = even

FIRMAARE REV.HM22SEP.0

PAGE 7

HUSKY ADVANCED PROGRAMMING

SECTION 4.1

ADDRESS NAME FUNCTION
DECIMAL | HEXADECIMAL
17813 4595 RXPTY Receive parity flag:
0 =none 1 = o0dd 2 = even
17814 4596 TXPROT Transmission Protocol:
0 none
1 = XON/XOFF
2 = ETX/ACK
3 = ACK/NAK
4 = SYSTIME
17815 4597 LEAF Line feed active or not:
0=no 1 =yes
17816 4598 NULAF Number of nulls following CR/LF
0 =none 3 =ten
1=two 4 = twenty
2 = five
17817 4599 ECHOF The serial output echo flag:
0 = no echo (FULL DUPLEX)
1 = output echoed onto HUSKY screen
17818 459A RXPROT Receive protocol conrols as TXPROT
17821/| 459D CTSVECT CTS interrupt vector. These locations
17822 | 459E contain an address for the CTS input
handler routine.
17823 459F/ DEFLIM Address of the lower limit of Basic
17824 45A0 simple variable and Array definitions.
Begininng of free memory after Basic
source and arrays (note 3).
17825/ | 45A1/ ALIM Address of the upper limit of Basic
17826 4572 program and Arrays. End of free memory
before Symbol Table (Note 3).
17827-| 45A3- ESCODE Escape code. Used when escaping from
17831 45n7 fully running code. Used to interrupt
A execution of user programs when Basic
auto—-start is in use. ASCII characters
are stored in Decimal form, most
significant digit at lowest memory
- location. - -

FIRMWARE REV.HM22SEP.0

PAGE 8

HUSKY ADVANCED PROGRAMMING SECTION 4.1

ADDRESS NAME FUNCTION
DECIMAL | HEXADECIMAL

17832 45A8 STARTF Flag to show immediate running of user
programs.

AAH (170 Decimal) = immediate run.
17725-| 453DH- OFFVECT Power off vector contains the address of
17726 453EH the power off routine, may be altered

for user power down.

17842 45B2H SERIG This contains the ASCII code of a
character to ignore when receiving
serial data. If not required set to 80H
(128 Decimal).

NOTE 1: If these locations are changed then to display on screen system

NOTE 2:

NOTE 3:

call 37 (Update Husky Screen) should be executed.

If these locations are changed then call Function 40 (Revise
Serial I/0) to actually implement.

Double-byte locations are stored in 8080 covention, with the
first (lowest) byte containing the least significant data.

FIRMAARE REV.HM22SEP.0

PAGE 9

HUSKY ADVANCED PROGRAMMING SECTION 4.1

4,1.5 The ROM Memory Map
Memory used by the firmware is divided into 4 EPROMs each
occupying 1000H of memory.
EPROM's are any of 2732, 2764 or 27128 varieties.

The locations of interest are mainly at the bottom of memory:

FIG.4.4
4000
EPROM 3
IC24
3000
EPROM 2
1C25
2000
EPROM 1
IC26
1000
EPROM 0
IC27
0

FIRMWARE REV.HM22SEP.0 PAGE 10

4.2

4.2.1

4.2.2

HUSKY ADVANCED PROGRAMMING SECTION 4.2

CP/M INTERFACE

The calls to the 'system' are designed for users who wish to
write their own assembler, or compiler software for the HUSKY.

General

The calls are made through location 5H. The C register contains
a number from OH to 29H which will identify the required
function. Other registers may be required to pass information
to the called program. Values are also retained in the
indicated registers. Registers not mentioned are irrelevant on
entry, but are not necessarily preserved during the call. Also
provided is the actual 'CALL' able address (the contents of REG
C are then irrelevant).

Example:

To print the character 'l' on the screen could be imple-
mented as follows in assembly code:

D E;'1" ; Required character in E
LD C,2 ; Required function
CALL 5H : The call

In BASIC, this call would be implemented as follows:

100 A = ARG(49 x 256 + 2)
110 A = CALL(5)

NOTE: The character '1' is equivalent to 49 decimal. See Basic

Programming Appendix I for further details.
A call not requiring an argument could be written as follows:
100 A = CALL(226)

Eliminating the need for the ARG statement. 226 is the actual
decimal address of the routine.

IMPORTANT NOTE

There is no relationship between register names (A,C,E etc.) in
this section and Basic variable names.

FIRMWARE REV.HM22SEP.0 PACE 11

HUSKY ADVANCED PROGRAMMING SECTION 4.2

4.2.3 SYSTEM CALLS

4,2.3.1 (0) FUNCTION : System Reset 'CALL' address
'CALL' ADDRESS : 109 Decimal
REG C : 0
Exit : No direct exit
Purpose : System restart - re-enters the HUSKY
Operating System.
4,2.3.2 (1) FUNCTION : Fetch and Echo key
'CALL' ADDRESS : 112 Decimal
REG C : 1
Entry : None
Exit : ASCII value in A, Bit 7 =0
Purpose : Fetch a key, entry from the logical
keyboard (HUSKY keyboard or
serial input) and echo onto the
HUSKY screen
4,2.3.3 (2) FUNCTION : Console output
'CALL' ADDRESS : 115 Decimal
REG C s 2
Entry : ASCII value in E, bit 7 must be 0
Exit : None
Purpose : To display a character on the
HUSKY screen.
4.2.3.4 (3) FUNCTION : Reader input
'CALL' ADDRESS : 118 Decimal
REG C : 3
Entry : ASCII value in A, bit 7= 0
Purpose : To receive a character from the

serial I/P port. The character is
received with the speed set up by
Port Initialisation.

If parity is requested then it is
checked. If parity fails then a
special OFFH character is returned.
NOTE: OFFH displayed on the screen
shows as a special error character

FIRMWARE REV.HM22SEP.0 PAGE 12

HUSKY ADVANCED PROGRAMMING SECTION 4.2

4.2.3.5 (4) FUNCTION : Punch output
'CALL' ADDRESS : 121 Decimal
REG C : 4

Identical to Function (5)

4.2.3.6 (5) FUNCTION : List output
'CALL"' ADDRESS : 124 Decimal
REG C : 5
Entry ¢ ASCII value in E, 7 must be 0
Exit : None
Purpose : To transmit the ASCII character to

the serial output port. The
parameters set up during Port
Initialise determines:

speed

parity

line feed

suppression or not Nulls at the
end of lines.

There is also the 'echo' flag which
will display the character on the
HUSKY screen as well.

4,2.3.7 (6) FUNCTION : Console I/0
'CALL' ADDRESS : 127 Decimal
REG C : 6
Entry : Reg E = OFFH input or
Reg E = char output
: Reg A = char or status
Purpose ¢ This function is to force communicat-
ion with the HUSKY screen and
keyboard.

If Reg E = OFFH then the keyboard is
tested and returns with A = ASCII
character when key is pressed.

If E = ASCII character (bit 7-0)
then the character is displayed on
the screen as for function 2.

4.2.3.8 (7) FUNCTION : Get I/0 byte
'CALL' ADDRESS : 130 Decimal
REG C &7
Entry : None
Exit : Reg A = I/0 byte value
Purpose : To see the current I/O set up of
HUSKY.

See Section on I/O handling for details

FIRMWARE REV.HM22SEP.0 PAGE 13

4.2.3.9

4.2.3.10

4.2.3.11

4.2.3.12

4.2.3.13

HUSKY ADVANCED PROGRAMMING

(8)

(9)

(10)

(11)

(12)

FUNCTION
'CALL' ADDRESS

REG C

Entry

Exit

Purpose

FUNCTION

'CALL' ADDRESS
REG C

Entry

Exit

Purpose

FUNCTION
'CALL' ADDRESS

FUNCTION

'CALL' ADDRESS
REG C

Entry

Exit

Purpose

FUNCTION

'CALL' ADDRESS
REG C

Entry

Exit

Purpose

FIRMWARE REV.HM22SEP.0

os oo oo se se oo ee oo oo so s oo

os o0

90 se oo oo ss ao

%0 so eo s0 s oo

SECTION 4.2

Set I/0

133 Decimal

8

E = I/O byte value

None

For setting the I/0 byte as above.

Print string
136 Decimal
9

DE register points to string address
None

Print a string indicated by DE to the
logical console terminated with a '$'
character.

Read console buffer
139 Decimal
Function not yet implemented

Get console status

142 pecimal

11 p

None

A = console status

To read the status of the logical
input device (keyboard or serial
input).

A = OH for no character ready else A
Non-zero.

Return version No.

145 Decimal

12D

None

HL with version No.

To simulate CPM returns a value of
20H in HL.

PAGE 14

4.2.3.14

4.2.3.15

4.2.3.16

4.2.3.17

HUSKY ADVANCED PROGRAMMING

FUNCTION (13) to (36)

SECTION 4.2

are disk system calls and are not

implented. Attempts to use them will cause the HUSKY to
re-start. REG C values from ODH to 24H.

The following functions are special to the Husky and
perform tasks useful in the Husky environment.

(37) FUNCTION : Update HUSKY screen
'CALL' ADDRESS : 220 Decimal
REG C : 37D
Entry : None
Exit ‘ : None
Purpose ¢ This routine will re-write the

(38) FUNCTION
'CALL' ADDRESS

Entry
Exit
Purpose s

(39) FUNCTION
'CALL' ADDRESS

Entry
Exit
Purpose

FIRMWARE REV.HM22SEP.0

HUSKY screen. If direct writing
to the ASCII string buffer has been
used, then it will be displayed.

Read time and date

223 Decimal

38D

None

The 'clock' memory is updated

This function causes the clock to be
read and placed in the memory
specified by HUSKY Technical

Notes memory map.

Basic can use. Peek or Poke to
operate on them.

Display time and date

226 Decimal

39D

None

None

As with function (36) this updates
the time memory registers, it also
places the current time and date on
the top line of the display. This
function will overwrite the previous
contents of the top line.

PAGE 15

4.2.3.18

4.2.3.19

4.2.3.20

HUSKY ADVANCED PROGRAMMING

(40) FUNCTION

(41)

(42)

'CALL' ADDRESS
REG C

Entry

Exit

Purpose

FUNCTION
'CALL' ADDRESS

Entry
Exit
Purpose

FUNCTION

'CALL' ADDRESS
REG C

Entry

Exit

Purpose

FIRMWARE REV.HM22SEP.0

oo se o es eo se

oo ss oo se es oo

SECTION 4.2

Revise Serial I/O

229 Decimal

40D

None

None

This function permits the user to
modify the serial I/O parameters
(specified in the memory map) and
then to actually set up the port by
calling this function.

This call will also clear the
contents of the received buffer.
Care should be taken that data is
not being received during this call,
or data will be lost.

See Section 4.1.4 for details of the
parameter locations.

Start clock

232 Decimal

41D

Correct time in the clock registers
A= 0 or 255D

This function starts the clock with
the time and date in the clock
registers. The seconds are reset to
zero at the time the function is
called. No checking is made.

Set clock

235 Decimal

42D

None

None

This call allows setting of the
clock exactly as the standard HUSKY
Initialise Clock routine. It
performs all checking, etc.,
necessary.

See 'HUSKY Operation' Section 2.5

for details of the use of this
program.

PAGE 16

4.2.3.21

4.2.3.22

4.2.3.23

4.2.3.24

HUSKY ADVANCED PROGRAMMING

(43) FUNCTION
"CALL' ADDRESS
REG C
Entry
Exit

Purpose

(44) FUNCIION
'CALL' ADDRESS
REG C
Entry
Exit
Purpose

(45) FUNCIION
'CALL' ADDRESS
REG C
Entry
Exit
Purpose

(46) FUNCITION
REG C
Entry
Exit
Purpose

FIRMWARE REV.BM22SEP.0

os o8 oo oo oo

so ee oo oo se oo

SECTION 4.2

Read the single input bit

238 Decimal

43D

None

Reg A = 0 for I/P = logic 0

Reg A = 1 for I/P = logic 1

This call will read the single input
bit. All the revectoring etc is
handled.

Note: Communications should not be
used when this call is executed.

Initialise Communications

241 Decimal.

44D

None

None

This call allows configuration of the
communications exactly as the
standard HUSKY Initialise
Communications routine.

This will free users of re-writing
the routine in Basic.

Get serial input status

244 Decimal.

45D

None

A = port status

To test for pending serial input
characters. A=0H for no characters
read else A is non-zero.

VDU Mode 'Call' Address 247 Decimal.

46D

None

None

None

When called from Basic, VDU mode
allows HOUSKY to operste transparent-
ly as a remote terminal. No Basic
variables or parameters are
affected. Exit from VDU mode is by
manual operation of control Help.
If VDU mode was ‘'called' from a
Basic program, then control will be
returneé to Basic after control
Help.

PAGE 17

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

HUSKY ADVANCED PROGRAMMING ‘ SECTION 4.3

SCREEN

As may have become apparent when using HUSKY, the screen control
software does not treat the screen in a purely simplistic
fashion. It aims to achieve maximum use of the available space
and maximum intelligability of the displayed information.

Shift Indicator

This character (| |) is displayed in the bottom right hand
corner of the screen to indicate the current keyboard shift
level. It is not stored in the screen ASCII buffer but is
generated directly by the screen control software. Any character
stored in the buffer will come into view if the screen is
scrolled.

Leading Spaces

Under normal circumstances the screen software will suppress
leading spaces on a line with a view to preventing the waste of
space. This feature can be overcome by using the right cursor
shift character (OCH) instead.

Blank Lines

The HUSKY will not permit two carriage returns to leave a blank
line. This makes use as a VDU on standard computers very much
easier. If a blank line is required then the down cursor (OEH)
character should be used.

Word Justification

If a word is going to overlap the end of a line, then the screen
software will move the entire word down onto the next line.
This makes reading of the display considerably easier.

Cursor Addressing
This feature is fully described in Appendix II of the Basic
Manual.

Direct Screen Use

The ASCII buffer is contained in memory at locations 4700H-
477FH. It is quite feasible to write ASCII characters (in the
range 20H to 7FH) directly into the buffer (using POKE in Basic)
and then updating the screen using function call 37. Similarly
characters may be read directly from the screen using PEEK.
However, care should be taken that the screen conroller has not
changed the position of the character.

The Screen Dot Buffer

The LCD display reads the dot information directly from RAM in
the range 4000H to 43FFH. For special displays not using the
standard character set it is possible to write directly into
this buffer. If the normal display software is used then the
dot buffer will be changed.

FIRMWARE REV.HM22SEP.0 PAGE 18

HUSKY ADVANCED PROGRAMMING SECTION 4.3

The format of the Dot buffer is:

i) Each character occupies 8 bytes, although only 7 bytes
are used.

ii) The buffer is in order starting with the top left
character at 4000H,

iii) The dots are used in bit positions DO to D4 with DO on
the left and D4 on the right.

FIRMWARE REV.HM22SFP.0 PAGE 19

HUSKY ADVANCED PROGRAMMING SECTION 4.4

i HELP

The HELP facility provides a means of breaking into normal
programs to display some text for operator assistance.

After the HELP text has been read control is returned to the
main program, as if nothing had happened, by pressing 'ENTER'.

4.4.1 The Help Vector
The text displayed by Help can be.linked to the operation
currently being performed. The start position of the text can be
set under program control. This is achieved by the pair of ram
locations 'VECTOR' (See Section 4.1.4), Decimal Addresses 17667-
17668, indicating the memory address of the start of text. This
is controlled by the HELP verb in BASIC.

VECTOR can also be set by POKE.

4.4.2 Text Storage
As can be seen in the BASIC section, the text is stored by means
of REM statements, which allows storing of ASCII text within
programs. The structure of BASIC program lines also has to be
contended with, The line:

10 REM ABCDEFGHI

is stored as:

FIG.4.5

OE on| 00 | 8F | 41 42 43 44 45 46 47 48 49| CR

I ASCIT TEXT |
LINE LINE LINE
LENGTH NUMBER TOKEN TERMTNATOR

FIRMWARE REV.HM22SEP.0 PAGE 20

4.4.3

4.4.4

4.4.5

HUSKY ADVANCED PROGRAMMING SECTION 4.4

The address in the vector points to the start of the line
number. The Help program will skip forward over the first four
bytes, checking the REM verb and then displaying the text.

NOTE: The REM verb is stored as 143 Decimal.

Belp Text Display

The software which controls Help will scroll forward through the
lines of BASIC text, or pseudo Basic text, until the verb found
is not a REM. Scrolling backwards is also allowed until a line
is found without a REM. In each case, further scrolling is not
allowed.

Storing the Current Display

The contents and cursor position of the screen is stored in a
backup ASCII string store. This store is located immediately
above the normal screen store.

HUSKY Action during HELP

When a program is interrupted for Help display all normal action
is suspended. Serial data reception will continue up to the
capacity of the receive buffer. If handshaking is enabled then
it will continue in a transparent fashion.

Programs will continue after 'Enter' is pressed.

Help will be entered during any scan of the keyboard, whether
for status or waiting for an actual key depression.

FIRMAARE REV.HM22SEP.0 ’ PAGE 21

4.5

4.5.1

4.5.3

HUSKY ADVANCED PROGRAMMING SECTION 4.5

PARALLEL PORT

Purpose
The parallel port has been designed for high speed data transfer
to the Micropolis disk controller board. However, it does
provide a flexible parallel interface for external user systems.
This section describes the available signals and their relative
timing.

Availability
The port is provided as an option in any HUSKY with more than
32K RAM. It is not available in 4K and 16K HUSKIES.

The parallel port cannot be user installed and must be ordered
from Husky Computers for installation and testing. The port can
be retro—fitted to existing HUSKIES.

The Interface

The signals are essentially an extension of the microprocessor
bus.

The RUS lines (BUS0-BUS7) are bidrectional data bits.

To provide timing the following signals are installed:

SLT (Select) RSTR (Read Strobe) and
WSTR (Write Strobe)

Two additional signals are implemented:

DATA which may be used as either additional single output bit or
for further addressing, and ENABLE which gives out a reset pulse
on HUSKY switch on.

it should be noted that the output signals are not latched and
that SLT must be implemented because the RSTR and WSTR signals
are used for the internal HUSKY operation and are continually
being activated.

FIRMWARE REV.HM22SEP.0 PAGE 22

HUSKY ADVANCED PROGRAMMING SECTION 4.5

4.5.4 Signals
FIG.4.6

~ BUSO
BUS1
BUS2
BUS3
BUS4
BUS5
BUS6
BUS7

HUSKY —<

RSTR

SLT

DATA

SIGNALS:

BUSO - BUS7 Bidirectional data bits

DATA Single output bit

SLT Active low port active strobe
RSTR Active low port read strobe
WSTR Active low portwritestrobe
ENABLE Switch-on reset pulse

GROUND Electrical ground

4.5.5 Signal Levels
All signals are CMOS compatible with a 5V supply rail.
Outputs

(NOTE: internal Vcc assumed 5.00V))

FIG.4.7
BUS0-BUS7
Output high voltage/I0/<luA 4,95V
Output low voltage /I0/<luA 0.05v

Output high (source) current VO=4.6V -2.0mA
Output low (sink) current VO=0.4V +2.0mA

FIRMWARE REV.HM22SEP.0 PAGE 23

HUSKY ADVANCED PROGRAMMING SECTION 4.5

FIG.4.8

Enable, RSTR, WSTR,SLT

Output high voltage /I0/<luA 4,95V
Output low voltage /IO/<luA 0.05v
Output high (source) current VO=4.6V -0.9mA
Output low (sink) current VO=0.4V 4.0mA
Inputs

FIG.4.9
BUS0-BUS7
Input high voltage 3.50V min
Input low voltage 1.50V max

All figures worst case at 25°C.

FIRMWARE REV.BM22SEP.0 i PAGE 24

HUSKY ADVANCED PROGRAMMING SECTION 4.5

4.,5.6 Pinout of the Parallel Port
The port is connected via the unused pins on the 25 way RS232
connector. The RS232 Serial data remains connected as detailed
in Section 5.

NOTE: Care should be taken in parallel port-equipped HUSKIES to
use only suitably-wired cables.

FIG.4.10

SIGMAL. PIN NO
BUSO 14
BUS1 15
BUS2 16
BUS3 18
BUS4 21
BUS5 23
BUS6 24
BUS7 25
RSTR 11
WSTR 13
SLT 22
DATA 19
ENABLE 17
GND 1

FIRMWARE REV.HM22SEP.0 PAGE 25

4.5.7

HUSKY ADVANCED PROGRAMMING i SECTION 4.5

g
FIG.4.11 Writing

SLT
4 T : .
BUS® - BUST fNvaLID\ " v
(OUTPUT) DATA | DATA | ‘
I l
WSTR | | | ,
|
I | I ' |
. ! ' ‘
|
DATA X ' DATA VALJTD ><
, |

FIG.4.12 Reading I ! .

SLT ' | o s

BUSO® - BUS7 (mm_x ‘
INPUT —_— o — — — - s mm moms MUST BE - - [
()

RSTR ‘ l

- g

FIRMWARE REV.HBM22SEP.0 PAGE 26

4.5.8

4.5.9

4.5.9.1

HUSKY ADVANCED PROGRAMMING SECTION 4.5

Use in Software
The port is configured at port addresses COH and ClH (hex-
adecimal values), 192 and 193 (Decimal Values).

Addressing COH has the data line low during reading or writing
and addressing ClH has the data line high during addressing.

The assembler code access is gained through:

OUT (COH), Writes data
or ouT (ClH),

IN (A),COH Reads data
IN (A),ClH

The Basic INP or OUT will also access the port, e.qg.

10 ouT 192,5 Writes 5 to the lower port.
20 A = INP(192) Inputs data into variable A.

Using the Interface
A few suggested circuits are shown below.

It is important that the power supplies used are 5V +5%. Also
the length of the wires used should not exceed 60 cm.

Suggested circuit (1)
8 bit parallel Input
In this configuration no external circuitry is required. The

desired data may be connected to the BUS0-BUS7 lines. However,
the port should not be written to, or a bus conflict will occur.

FIRMAARE REV.HM22SEP.0 PAGE 27

HUSKY ADVANCED PROGRAMMING

FIG.4.13
Suggested circuit (2)

8 bit parallel Output

Par

74C
BUS@-BUS7 13 374

[S20 1 5]

11 1 10
SLT

GND O—\L

FIRMWARE REV.BM22SEP.0

SECTION 4.5

PAGE 28

HUSKY ADVANCED PROGRAMMING SECTION 4.5

FIG.4.14 16-BIT OUTPUT/16-BIT INPUT CIRCUIT

BUS 2"@?

- : s N
— a —t
W] 74C =
—— o aTa e
P 5 e
SLT 74C02 T ‘—i
S
DATA C?
74C04
o
74C oz
374
—o005
CLK 0D 018
WSTR
LE 3
.
5 ;
2 74C | ;
P
o 878 [
16 17 N
19 18 "
.)
RSTR = :D_j @—I
LE
.
-
74C
373 n3
. I

FIRMWARE REV.HM22SEP.0 PAGE 29

4.6

4.6.1

4.6.2

SINGLE BIT INPUT PORT

The single input bit has been implemented for use with devices
such as bar-code wands, voltage free switch contacts, etc. It
is provided via the 4 pin Lemo socket pin 2. Note should be
made that it is shared with the CTS signal on the V24 interface
(pin 5). It should not, therefore, be used at the same time as
the communications when hardware handshaking is in use.

Circuit Implementation
The input is configured as a protected, pulled up CMOS
compatible line:

FIG.4.15
5V

10k

We—>e

100K

It has a logic 1 threshold of > 3.5V and a logic 0 < 2.5V. It is
protected to +25V.

The pull-up resistor enables the use of a switch to ground to
provide the input.

No debounce circuitry is provided. If it is required then
software must be written for this purpose.

Software Configuration
The input is connected directly to the NSC800 interrupt RSTC.

The normal vector for this is at memory location 02CH, located
in EPROM 0. Memory locations 4590H and 4591H have been provided
as the vector address. The contents of these locations are the
address (lo-hi storage) of the target routine. This is avail-
able for Basic to POKE a new address for the user input routine.

The NSC800 will be interrupted with the input at logic 1 or
quiescent. The interrupt is also controlled by the NSC800 mask
located at port location OBBH and the interrupt enable and
disable instructions. To enable the interrupt firstly the mask
must be opened by writing 02H to port 0BBH, and then executing
the EI instruction. The bit may be tested by opening the over-
all mask interrupt and seeing if the interrupt occurs or not.

FIRMAARE REV.HM22SEP.0 PAGE 30

HUSKY ADVANCED PROGRAMMING SECTION 4.6

The interrupt may be used to interrupt Basic.

If the interrupt is used and communications are subsequently
required, the system call 'revise serial I/0' (Function 40)
should be executed.

Alternatively, system call 45 can be used, when the
communications will be kept intact. The disadvantage of using
this call is that it is relatively slow.

4.6.3 Pimout of the Lemo Connector

FIG.4.16
PIN NO SIGNAL
1 S GROUND
2 s CTS or input
3 3 Charger/reset
4 : 5V output (Wand option only)

Connector as seen on HUSKY

FIRMWARE REV.HM22SEP.0 PAGE 31

4.7

HUSKY ADVANCED PROGRAMMING SECTION 4.7

ON /OFF KEY

Unlike most equipment, the HUSKY ON/OFF switch is not actually
in control of power removal. The key is seen by the software
scanning the keyboard and the actual decision to turn off is up
to the software itself.

If a machine code program places the HUSKY into an endless loop,
it will be impossible to turn off the machine. This may be
overcome by either removing the main battery, or by shorting the
Lemo socket pin 3 to the case, which causes a processor reset.

If the program needs to turn off the HUSKY then this may be
achieved by outputing a 0 to port 131 with:

1000 our 131,0
In some applications, accidental operation of the power key
during a critical keyboard operation (data entry, for instance)
can be very annoying. The flag location NYMPHO (17724 Decimal)
will inhibit power off if set non-zero.

See Section 4.1.4, also Section 3.3.4.21 for details of the 'On

FIRMAARE REV.HM22SFP.0 PAGE 32

4.8

4.8.1

4.8.2

HUSKY ADVANCED PROGRAMMING SECTION 4.8

CLONING HUSKY

The purpose of cloning is to copy the actual memory contents of
a HUSKY directly into either another HUSKY or a receiving
device. Conversely, memory may be written into directly by
means of cloning allowing the loading of machine code programs
directly into the HUSKY.

Cloning uses the well known 'Intel Hex' data format and is
compatible with most CP/M computers, whose ".HEX' files may be
transmitted by means of the PIP program.

Selecting Cloning

To enable cloning in either direction, the main menu selection
'Cloning Husky' should be selected by pressing Enter. This
gives a sub-menu of:

3 This Husky receiving
2 This Husky transmitting
1 Transmitting Basic source

Selection of loading gives a warning on the screen that the
current memory contents of the HUSKY will be destroyed by
overwriting with new information. Any other key than 'Y' will
abort the selection.

Principle of Cloning

Within the free RAM space the HUSKY will generally have all of
its Basic program and data. If this is directly copied into
another HUSKY then the second HUSKY will assume all the features
and knowledge of the originiating HUSKY. Of course, the two
HUSKIES should have the same memory size.

There is, however, a further benefit in that loading the HUSKY

memory with machine code programs can be achieved with any
machine which conforms to the data formats specified below.

FIRMWARE REV.HM22SEP.0 PAGE 33

4.8.3

4.8.4

HUSKY ADVANCED PROGRAMMING SECTION 4.8

Data Format

The HUSKY uses the popular Intel Hex format for the data
transfer. This format is used by CPM, Intel etc., on their
microcomputers. The data is Spllt into blocks with header and
trailer information and the data in between. Each data block
contains the memory locations into which the data is to be
placed.

A single block of data appears as:

:BAAODD. ¢eeeeaessssDDC

where
B = number of data bytes
A = Address
0 = signifies data record
C = checksum

Each byte is transmitted as two hexadecimal characters (0-9 and
A-F).

The record starts with a colon, which is detected by the receiv-
ing system. This is followed by a count of the data bytes, the
load address, a de11m1ter, the data itself and a checksum on the
end. The record is terminated by a carriage return.
The transmission is ended with a null record:

:0

The checksum is calculated as the modulo 256 addition of all the
preceding bytes of information.

The HUSKY always transmits records of 16 bytes.
Cloning Data In
When loading the HUSKY the address of the information is checked
to ensure that it has written the useable address space of the
physical memory. Also the checksum is checked. If either of
these checks fails, then an error message is displayed:

* * Memory overflow * *

or
* * % [oading error * * *

as appropriate.

FIRMWARE REV.HM22SEP.0 PAGE 34

4.8.5

4.8.6

Reception of the end of record gives:
* * Loading completed * *
The loading may be aborted at any time by pressing ESC.

The length of input data records is optional and is specified by
the record up to 255 bytes.

Cloning Data Out

The length of the record is fixed at sixteen data bytes. To
start the transmission the HUSKY awaits the Enter key to ensure
that all connections have been made. The data may be Echoed
onto the screen to verify active transmission (see section
5.3.10).

The transmission may be aborted by pressing ESC.

Loading Machine Code Programs

The clone-in program will load any object code into memory. This
may then be executed using the CALL verb in BASIC.

Care should be taken not to overwrite any part of a BASIC
program or BASIC's data.

FIRMWARE REV.HM22SEP.0 PAGE 35

4.9

4.9.1

4.9.2

HUSKY ADVANCED PROGRAMMING SKCIIUN 4.9

MACHINE CODE PROGRAMMING

The ability to write machine code routines has been mentioned
throughout this manual. The use of machine code is desirable
from the point of view of increased speed for certain
operations, ability to do bit level opertions, data compaction
for particular applications, etc. Also it may be desired to
implement compiled programs within the HUSKY, which can be
loaded by means of cloning.

Linkage to HUSKY BASIC

BASIC is provided on all standard HUSKIES. Machine code
routines can be started from Basic, primarily by the CALL verb.
The argument passing is detailed in the BASIC Programming
Section 3.6.

Available Memory

The amount of memory obviously depends upon the HUSKY. The
system memory has been defined in Section 4.1. For the most
part, this should be avoided by the user, apart from locations
defined for particular functions.

In some cases, it may be convenient to use the communications
buffers for small routines set up by BASIC. This space, located
at 4800H (18,432 Decimal)to 4900H (18,688 Decimal) is only used
by the system during serial I/0. (If the user is totally
confident that no serial input will occur). Recall that serial
input is transparent to current programs and will write into the
input buffer if any data is received. Many field applications
will not be using RS232 and can therefore use this space.

Storage used by Basic in HUSKYs up to 48K is allocated as
follows:

FIRMWARE REV.HM22SEP.0 PAGE 36

4.9.3.

4.9.4

HUSKY ADVANCED PROGRAMMING SECTION 4.9

HUSKYmemory D700H
FIG.4.17 limit
i 3;'\"%7&5&5 <
Storage used by Basic DEFINITIONS
(DEFLIM)
FREE SPACE
(ALIM)
BASIC
PROGRAM
100H
O/SUSE

As can be seen program and arrays work up through memory, simple
variables and array definitions work down. The gap in the middle
is available and unused, the amount being displayed using the
FRE verb. The limits are contained in memory locations ALIM and
DEFLIM. The address contained at these locations indicates the
position of the free space.

It should be remembered that these locations are allocated
dynamically and are entirely dependent upon the program and
variable storage. Also, if CLEAR or a new program line is
inserted then the data storage is removed, so DEFLIM will point
to the top of memory and ALIM to the top of the program.

Hence, the program should be RUN before using these values.
Clearly, if BASIC is only used to start a large machine code
program then there will be no variables and only a small amount
of BASIC source.

System Calls :

The system calls are all defined in Section 4.2.3. They should
be used by CALLing location 5 with the relevant value in C for
CPM compatibility. NO guarantee is made of the contents of
undefined registers on exit and in general they will be
destroyed.

The Stack

The machine code stack pointer is initialised at switch on. It
is not recommended that it should be moved as the system can use
a considerable amount of stack space. Under no circumstances
should routines be written which preclude the use of interrupts;
the V24 I/0 uses them liberally.

FIRMAARE REV.HM22SEP.0 . PAGE 37

4.9.5

4.9.6

4.9.7

4.9.8

HUSKY ADVANCED PROGRAMMING SECTION 4.9

If a large amount of stack is used which causes the stack to be
filled up, then the display will start to contain the overflow.
If strange dots and characters start to appear then too much
stack is being used!

ON/OFF

As detailed in section 8, the ON/OFF button is software
controlled. The keyboard should be scanned periodically in any
user written software if manual power off is required.

The NSC800

It is not proposed to go into software techniques, meaning of
object code, etc., here as the NSC800 is totally software
compatible to the Z80. A list of the machine code instructions
is presented in Appendix I. Users are referred to any tutorial
book on the %80 for detailed programming information.

Execution Time

Of interest in machine code loops, etc., is the execution time
of the program. The number of cycles used by each instruction
is detailed in Appendix I. The cycle time in the HUSKY Is luS
(an enhanced HUSKY with 400nS cycle time is available to special
order) .

However, the display uses a significant amount of processor time
which will slow execution by approximately 17%, depending upon
the program being executed.

If serial data is received, then the routines will be
considerably slower due to interrupts. However, if no incoming
data is expected then the disable interrupts instruction, DI
can be used to prevent them. Remember to use an EI (enable
interrupt) instruction to re-enable RS-232.

Paged Systems

HUSKY's with memory greater than 48K use a transparent paging
system under control of Basic. This paging system is not
available for direct user control at present and is not
compatible with other microcomputers.

User programs can occupy most of page O ram, up to 48K Bytes.
Further information is outside the scope of this manual.

Contact Husky Computers if assistance is required.

FIRMAARE REV.HM22SEP.0 PAGE 38

HUSKY ADVANCED PROGRAMMING SECTION 4.10

4.10 PORT ALLOCATIONS

The HUSKY uses the NSC800 port map for all its I/0 functions,
including the keyboard, RS232, etc. The following gives a list
of the most useful ports which can be controlled from BASIC
using OUT or INP verbs or from machine code.

FIG.4.18

Address Name Description
Decimal Hex

32 20H CURSOR Output with a number 0-7F for
the cursor position on the
display. The screen software
controls this port.

129 81H v240UT Directly outputs to the V24
data line signal on BITO.
The output is voltage
inverted i.e.

0=+Ve, 1=-Ve

130 82H CURINH Inhibit cursor.
BITO = 1 : Cursor off
BITO = 0 : Cursor on

131 83H POWHLD Power control.
BITO = 1 : Husky on
= 0 : Husky off

132 84H INVCON V24 inverter control.
BITO = 1 : Inverter on
i.e. V24 output active
BITO = 0 : Inverter off
i.e. V24 inactive

133 85H PAGA 16 Memory paging address
16

134 86H PAGA 17 Memory paging address
17

135 87H PAGA 18 Memory paging addres
18

FIRMWARE REV.HM22SEP.0 PAGE 39

HUSKY ADVANCED PROGRAMMING

SECTION 4.10

Address Name Description
Decimal Hex
187 BBH ICRREG NSC800 internal interrupt
mask register. See NSC800
handbook.
192 | COH PPORTO parallel port 0. Eight bit
parallel read/write port.
See section 4.6.
193 Cl1H PPORT1 Parallel port 1.

FIRMWARE REV,HM22SEP.0

PAGE 40

4.11
4.11.1.

4.11.2

4.11.2.1

4.11.2.2

4.11.2.3

4,11.2.4

HUSKY ADVANCED PROGRAMMING SECTION 4.11

INTRODUCTION

HUSKY is designed, built and quality tested for robustness in
every sense including robustness of program execution.

Husky's microprocessor system has wide design tolerances (much
more than conventional computers) to guarantee absolutely
reliable execution of millions upon millions of machine-code
instructions every hour. Its physical construction protects it
against mechanical disturbance, while the conventional
computer's Achilles heel - external electrical interference — is
virtually eliminated.

Because of these factors, HUSKY is most unlikely ever to mis-
execute a user's program or behave in a way that is not
thoroughly predictable, given sufficient insight.

CRASHES

However, there are some specific situations that can cause HUSKY
to mis—execute its internal programming, or "Crash".

The commonest causes are:

Illegal System Calls
System calls from Basic are not 'trapped' (this would restrict
user programming) and can cause mis-execution if not valid.
Ensure that system calls are always precisely in the format
indicated in section 4.2 of this manual.

Invalid user machine code

User assembly-level programs or subroutines can easily cause
mis-execution by containing, for instance, invalid jump
instructions.

Physical degradation

Ingress of water, corrosion of internal parts, damage to
components through excessive shock or persistent high level
vibration can reduce electronic tolerances.

Operation outside specified temperature range

HUSKY is specified for operation in the range 0-55°C. Operation
above 55°C reduces tolerances, while below 0°C battery capacity
becomes severely restricted. Sub-zero temperatures also slow
LCD screen response time substantially. HUSKY is unlikely to
mis-execute program simgly because of low temperatures, however,
in the range 0°C to -20°C,

FIRMWARE REV.HBM22SEP.0 PAGE 41

4,113

4.11.3.1

4.11.3.2

4.11.3.3

4.11.3.4

4.11.4

4.11.4.1

HUSKY ADVANCED PROGRAMMING SECTION 4.11

SYMPTOMS
"Crashes" are identified by these symptoms:

Keyboard Lock—out

HUSKY's keyboard is entirely "soft" to allow user re-definition
of key functions, including the power key.

If HUSKY's internal program is caused to 'Crash', power control
may be lost. The HUSKY will not switch off.

Clock wipe—out

Following a mis-execution episode, HUSKY's calendar clock
registers may be corrupted. The clock's display will probably
reset, while the display program (after power—up) may chatter
instead of returning regular 'ticks'.

Program Corruption

The most serious consequence of mis—execution is when the micro-
processor runs 'wild', writing data randomly to all parts of
memory and, occasionally, corrupting user programs. This failure
is generally catastrophic, and is unlikely to go undetected.
The most likely consequence is that any attempt to 'RUN' the
corrupted program will result in keyboard lock—out (see above).
Attempts to 'LIST' corrupted programs may also result in lock-
out.

I/0 Corruption
1/0 selections may be affected by mis—executions in a random
fashion. In some cases spurious options may appear in the
parameter selection screens after a 'Crash'. In this event,
hold down the option selection (| | keys) until recognisable
options appear.

RECOVERY

Program Corruption

If a mis—execution has occurred, any user program stored in RAM
memory must be viewed with suspicion. The safest solution,
assuming that the use of keyboard is still available, is to type
'NEW', followed by re-loading of the program.

Remember that even 'LIST' may result in keyboard lockout,
although holding the power key down will generally restore
control eventually.

Most types of corruption (corrupted lines, spurious line

numbers) are unrecoverable in Basic and can only be eliminated
by 'NEW'.

FIRMWARE REV.HM22SEP.0 i PAGE 42

4.11.4.2

4.11.4.3

BUSKY ADVANCED PROGRAMMING SECTION 4.11

KReyboard Lock-out
If keyboard lock-out (failure to power down) occurs, there are
two possible solutions:

1) Apply 'RESET' by shorting LEMO connector pins 1
and 3.

2) Remove the main battery plug, disconnecting HUSKY's
power supply.

In both cases, HUSKY should power-up again normally. If
desired, try running the user program, but be ready to clear any
lock-out that occurs using the above methods. If lock-out
persists, type '"NEW' after restoring operation.

System Lock—out

In very rare cases, HUSKY may fail to restart correctly after a
mis-execution episode. This is possible in a program that uses
auto-start (section 3.1.4 in Part 3, Basic Programming) and
contains an invalid system call.

Any program corruption resulting could leave the auto-start flag
set, but cause a lock-out when power-up is attempted.

The solution is to apply the 'ESC' sequence immediately after
power-up, in order to reset the auto-start flag.

FIRMWARE REV.HM22SEP.0 PAGE 43

4.12
4.12.1

ADVANCED PROGRAMMING SECTION 4.12

KEYBOARD

Introduction

ALL HUSKY computers are supplied with a standard general-purpose
keyboard (Fig.4.19), unless specifically ordered otherwise.
Users are encouraged to design customised keyboard layouts
tailored to their application, especially if dedicated function
keys are likely to be an advantage.

Since HUSKY's keyboard graphics panel is a peel-off self
adhesive overlay, replacement of the keyboard graphics is an
easy matter. Simply prise up the corner of the overlay panel
and peel off, but be careful not to crease the panel if you
intend to use it again. Replacement panels to user's designs
are easily printed by Husky Computers. Please see the 'custom
keyboard order form' at the rear of this section.

Keyboard overlays are reverse — screen printed on polycarbonate
material 0.005" (0.127 mm) thick and are proof against wear and
most forms of accidental damage.

Some samples of specialised keyboard layouts are shown in Figs.
4,20 - 4.23

NOTE: Husky's standard keyboard layout was changed at the end
of 1982 to improve ergonomic factors. The layout for current
production Husky's is shown in Fig. 4.19. Units made before
this date may have the layout shown in Fig. 4.20 - the 'numeric
keypad' layout.

REV.HC10APR PAGE 44

FIG.4.20

REV.HC10APR

PAGE 45

SECTION 4.12

ADVANCED PROGRAMMING

FIG.4.21

FIG.4.22

PAGE 46

REV.HC10APR

ADVANCED PROGRAMMING ' SECTION 4.12

FIG.4.23

B
.

+

111%/14

REV.HC10APR PAGE 47

4.12.2

ADVANCED PROGRAMMING SECTION 4.12

Electrical re—definition

Keyboard keys are each equated to the characters they represent
by unique numerical codes, as listed in Part 3, Appendix I.
These values are defined according to the American Standard Code
for Information Interchange (ASCII).

The value returned to BASIC in, for instance, an INCHR statement
is the numerical equivalent of the key pressed.

The ASCII definitions of each key for the keyboard are contained
in eighty consecutive RAM locations named KEYBUF (4600H-decimal
17920). The upper shift keys are defined in the first forty
locations, followed by the forty lower shift keys. These memory
locations form a 'map' of the physical keyboard, as shown in
Fig. 4.25.

On power up, the HUSKY automatically defines these locations to
a standard configuration. However, the programmer has the
option to be able to define special keyboard arrangements.

The schematic of the keyboard shows the offset value in
KEYBUFF for each key.

As an example, consider the key fourth from the left on the top
row. If it was required to program this key to be $ in upper
case and S in lower case, two Poke operations would be required.

POKE 17926,36
POKE 17966,83

It is important to note that on powering up the HUSKY, the
keyboard will revert to the standard version. The programmer
should define the special keyboard requirements at an early
stage in the program and ensure that the re-definition occurs
each time the program is run.

NOTE: The power on/off key is fixed and cannot be moved.

REV.BC10APR PAGE 48

SECTION 4,12

ADVANCED PROGRAMMING

FIG.4:25

(TTEVANYEDOYd ION) A& YAMOd:

TSuOT30uUNg £e¥ SUTJSP YOTYM (TBWTOSP UT) SUOTFROOT AJOWS

[os6t)[[vest 266L1 | mm&Qmﬂ nG6LL se6Ll | 9664 | [L66LL | [6641 | ; 6.1 |
os6lrJ/(_rseir | |_eseut) | eseir | {_noeer | | sseur] | oseu || sceus | | sseir | | eceLs
-~ -) ¢ — == — Y —)
086.LL L86.LL 286LL . €B6LL | | Hg6LL G86.LL 986.L1 L86LL | | 886LL h 686L1
on6Lf) (6L) (_en6ut) |_gn6s | mmelr | | swesr | | om6rr | | nu | | gwelr | | enelt

—— — (
@ visLy || eselr || es6u | [owuen | [cueer)| (ozert | [ssent | | a6t | [es6ls)
L vesiL) | ee6lr) (_eeou | (_neelr | | seeur | | ogerr | | ageir | | sselt | | ecout
N e ﬂ (i I TTYE
096LL | | 196Lt || 296Lt || €96iL | | noeit | so6Lt | [ooer | [296it) [s96Lr) [696L
L 026LL L26.LL L 2cbLl) f\mmmhp ﬁ\ﬁmmbp) GebLL fMWmNF Le6Ly J 826LL] mmmﬁr‘
" — 5 ¢ .
o 6 m L Q =1) 74 t e L
*a +_ i . S J @; - GL - s Ao
z a AN e X 4 aoeds
L AIL —J tOOSL L ax.L uL - >J L
P ﬁ =~ a = — J ﬁ — ;
ESIENIE :1.;1. 2 |[a |[a|[s][v,
S J > [- J I N
—. ' — S) &)) {) (
d |[o ll AldlL e][3a |[m]fe
o | | S \) N LD L 1] _g “ ;

ase)
as®)

ase)
ase)

ase)
ase)

osE)
asE)

PAGE 49

JBMOT
Jaddn

JOMOT
Jaddp

JOMO]
Jaddp

JOMOT
Jaddn

REV.HC10APR

4.12.3.

ADVANCED PROGRAMMING SECTION 4.12

Special Codes
Special codes are assigned to keys whose functions are:

(1) Control key

(2) shift key (latched)
(3) Help key

(4) Momentary shift key

In order for the operating system to detect a change of these
keys, the SPELFLG (decimal 18000) location must be cleared.
Changes modifying the special codes should only be done under
software control, not by direct POKE statements.

NOTE: 'Enter' is not a special code: it is simply CR (Decimal
13) !

IATCHED SHIFT CODE 129 (81H)

This key should be defined in both shift halves in order to
function correctly! This function gives a 'toggle' action,
changing shift with each operation.

MOMENTARY SHIFT CODE 130 (82H)

As HUSKY powers up in the lower shift, it is important for the
momentary shift code be defined in the lower shift half of
KEYBUF. This function gives a 'conventional' shift requiring
simultaneous depression of shift and the desired key.

CONTROL CODE 132 (84H)

On detection of this key the control code for the key pressed is
derived from the code located in the upper shift half of KEYBUF,
if this key has a valid 'control' equivalent.

CONTROL CODE 133 (85H)

On detection of this key the control code for the key pressed is
derived from the code located in the lower shift half of KEYBUF,
if this key has a valid 'control' equivalent.

HELP CODE 134 (86H)

The detection of this key causes the firmware to enter the HELP
text mode. Help mode is exited by typing 'Enter'.

REV.HC10APR PAGE 50

4.12.4

ADVANCED PROGRAMMING SECTION 4.12

Example Keyboards

Following are some examples of special keyboards set up by the
programs shown. Note that these program lines need to be
executed every time the HUSKY is powered up.

KEYBOARD 1

REM TEST KEYBOARD ROUTINE

REM GENERATES 'NUMERIC KEYPAD' KEYBOARD (Fig.4.20)
10 POKE 17920,31,41,40,47,57,56,55,59,34,33

20 POKE 17930,0,27,61,42,54,53,52,58,62,63

30 POKE 17940,30,12,8,45,51,50,49,60,37,36

40 POKE 17950,13,11,14,43,46,48,32,127,129,134

50 POKE 17960,80,79,73,85,89,84,82,69,87,81

60 POKE 17970,0,76,75,74,72,71,70,68,83,65

70 POKE 17980,30,12,8,77,78,66,86,67,88,90

.80 POKE 17990,13,11,14,133,46,44,32,127,129,134

90 POKE 18000,0
100 END

KEYBOARD 2

REM TEST KEYBOARD ROUTINE

REM GENERATES 'NUMERIC KEYPAD' KEYBOARD WITH MOMENTARY SHIFT
10 POKE 17920,31,41,40,47,57,56,55,59,34,33

20 POKE 17930,0,27,61,42,54,53,52,58,62,63

30 POKE 17940,30,12,8,45,51,50,49,60,37,36

40 POKE 17950,13,11,14,43,46,48,32,127,130,134
50 POKE 17960,80,79,73,85,89,84,82,69,87,81

60 POKE 17970,0,76,75,74,72,71,70,68,83,65

70 POKE 17980,30,12,8,77,78,66,86,67,88,90

90 POKE 17990,13,11,14,133,46,44,32,127,130,134
100 END

KEYBOARD 3

20000 REM UPPER/LOWER CASE KEYBOARD SUBROUTINE

20010 REM CALL 21000 FOR UPPER/LOWER CASE

21000 POKE 17960,112,111,105,117,121,116,114,101,119,113
21010 POKE 17971,108,107,106,104,103,102,100,115,97
21020 POKE 17981,109,110,98,118,99,120,122

21050 POKE 17920,80,79,73,85,89,84,82,69,87,81

21060 POKE 17931,76,75,74, 72,71,70,68,83,65

21070 POKE 17941,77,78,66,86,67,88,90

21090 RETURN

REV.HC10APR PAGE 51

ADVANCED PROGRAMMING

SECTION 4.12

CUSTOMER KEYBOARD ORDER FORM

Customer name:

Address:

REQUIREMENT

Colour of machine:

Is keyboard layout as
standard?

Number of different
colours on keyboard:

pate:[]
OrderNo.[]

Number of machines:

Yes I:‘ No l:l

Please specify on layout — see reverse.

REV.HC10APR

PAGE 52

ADVANCED PROGRAMMING SECTION 4.12

REV.HC10APR PAGE 53

NSC80O0O MACHINE CODE

INSTRUCTION clz '7\/ S I N|H COMMENTS
ADD A, s; ADC A, s tlrbv]i]of: 8-bit add or add with carry
SUBs:SBC A5, CP5,NEG | | :|v[:|1f: 8-bit subtract, subtract with
carry, compare and
negate accumulator
ANC 5 of:fe|:]o] Logical operations
OR s, X2d 5 of:|e|:]o]o And sets different flags
INC ef:|v|i]of: 8-bit increment
DICm efijvii]af: 8-bit decrement
ADD DD, ss ity lefejo|Xx 16-bit add
ADC HL, 52 vlivjilo]x 16-bit add with carry
SBC HL, 55 sleqw o] x 16-bit subtract with carry
RLA; R'.CA, RRA, RRCA ile e |ej0]O Rotate accumulator
RLm ELCm RRm:AsCm| : |t |P |:]o0]0 Rotate and shift location s
SLA m;SRA m;SR. m
RLD, RRD ef:|pf:fo]o Rotate digit left and right
DAA e fi]e]: Decimal adjust accumulator
CPL e|le e el Complement accumulator
SCF 1]efejefo]o Set carry
cCF tle|afefofx Complement carry
IN', (C) efs|P|:fojo Input register indirect
INI;IND; OUTI; OUTD L I X X1 X || Block input and output
INIR; INDR; OTIR; OTDR e | X (x| X |1 Z=0i18B s 0otherwise 2= 1
LDI, LDD e | x|t x| 0|0 || Block transfer instructions
LDIR, LDDR efx|o{x[o]o [I Pv=11BC:+ 0 otherwse
PIV=0
CPI, CPIR, CPD, CPDR L B x| X Block search instructions
Z=1 A= (HL),
otherwise Z = 0
PIV=1BC =0,
otherwise P/V = 0
LDA,I;LDA R o|: JiFF|: |00 The content of the interrupt
enable flip-flop (1FF) is
copied into the P/V flag
BITb,s of:|x|x|o]s The complement of bit b of
location is copied into the
NEG v] Z flag
Negate accumulator

The following notation is used in this table

SYMBOL OPERATION

c Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result.

Z Zero flag. Z=1if the result of the operation is zero.

s Sign flag. S=1f the MSB of the result 15 one.

P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations
affect this flag with the parity of the result while arithmetic operations affect this flag with
the overflow of the result. If P/V holds parity, P/V=1 if the result of the operation 1 even,
P/V=0 if result is odd. If P/V holds overflow, P/V=11f the result of the operation produced
an overflow.

H Half-carry flag. H=1if the add or subtract operation produced a carry into or borrow from
bit 4 of the accumulator.

N Add/Subtract flag. N=1if the previous operation was a subtract
H and N flags are used in conjunction with the decimal adjust instruction (DAA] to properly
correct the result into packed BCD format following addition or subtraction using operands
with packed BCD format.

1 The flag is affected according to the result of the operation.

. The flag is unchanged by the operation

0 The flag is reset by the operation.

1 The flag is set by the operation.

X The flag is a “don’t car

v P/V flag affected according to the overflow result of the operation

3 P/V flag affected according to the parity result of the operation.

’ Any one of the CPU registers A, B, C, D, E. H, L.

s Any B-bit location for all the addressing modes allowed for the particular instruction

s Any 16-bit location for all the addressing modes allowed for that instruction

W Any one of the two index registers 1X or 1Y

R Refresh counter.

n 8-bit value in range <0, 255

nn 16-bit value in range <0, 65535 -

m Any B-bit location for all the addressing modes allowed for the particular instruction.

SUMMARY OF FLAG OPERATION

Ls[z[x[W] x]pv]n]c]
Sequence of flags in F register

PAGE 54

APPENDIX I

FLAGS NO
MNEMONIC ;:::AQ::EN Qrcoot Lesr COMMENTS
Piv| s 76 543 210 | CYCLES
e ele e 0 ¢ 3 4
e o]e]e 00 « mo| 7
_
LD ¢ (HL) e (HL) elele 01 ¢ M0 7
Lo (xedl | oo UXed) oe]e Moo 19
01 ¢ 110
5 b %
LDv, (1Yed) e (1Y +d) elele moman 19
01 ¢ 10
@
LD (HL). ¢ GRS o|e]e 01 110« 7
LD UXed) o | (Xod) - ofefe 1nonaor| 9
01 110 «
4 -
uved.e | tved - efele LRIRTRIRTTN BT
01 110 ¢
4
LD (HL). n (HL) - n olele 00 110 110 10 .
8 o=
LD (1X+d). n X+d) - n eleje 1mon o 19
00 110 110
d
LD (1Y+d), n ys+d) - n el oo mn oo 19
00 110 110
a
W
LD A, (BC) A - (BC) eleoje 00 001 010 7
LD A (DE) | a- (0E) ofefe 00 o1 ow| 7
LD A (nn) A= (nn) el eole 00 111 010 13
LD (BCI, A [CITEN olefe 00 000 010| 7
LD(DELA | (DE)I- A ol oo 00 010010 7
LD (an). A (an) - A ofo]e 00 10010 13
n
o
oA A- IFF| 1 101 100 9
01 010 1M1
LD AR A R IFF] [AIRTTIRTIY K-}
01 011 1M1
(LYY A of oo o] 9
01 000 111
LDR A R- A el eofe 11101 101 9
01 001 111
LD dd, nn dd- nn of oo 00 dd0 001 [10
. W
a .
LDIX, nn 1X - nn el oo 11 011100 14
00 100 001
[
- W
LOIY. nn Y- a0 ofofe nao| e
100 001
s oW s
n
LOHL (na) [H- (anet) ofofe 00 101 010 16
L: (nn) n
¢ & 3
LD dd, (nn) ddy - (nnel) LA EAE] 11 101 101 20
ddg - (nn) 01 dd1 011
C -
LD IX, (nn) Xy = tnne1) ol oo 1 o0mo 20
X - tan) 00 101 010
a
LD 1Y, (an) Yy tanet) ol ele 1 10 20
1YL+ (an) 00 101 010
n
- a -
LD (nnl HL [tanen) - M ofofe 00 100 010| 16
(nn) - L L n -
n

PAGE 55

APPENDIX I

N
SYMBOLIC FLAGS 0P-CODE of,
OPERATION Cycues| COPMENTS
zlervys 76 543 210
LD (an). d¢ | (nn+d) - ddy IR naorion| 20
‘an) + ddy 01 ddo 011
< on
n
Lo (an) 1X | taned) - iXy efefe monio| 20
ton + 1Xp 100 010
o R4
@ w3
LD (nl 1Y [(ane1) e 1Yy ole]e nmang 20
(nn) + 1Y 00 100 010
-
@ &
LD SP, HL SP - HL ejeole 11 111 001 5
LD SP, 1X sP- X ofo]e non| 10
11 111 000
LD SP, 1Y sP- 1Y of ofe ILIRITIRTIN T
11 111 001
PUSH aa (SP-2) - aq ofefe 1M g0 01| 1
(sP-1) - aay
PUSH IX (SP-2) + IX ofofe nonor| s
(SP-1)+ Xy 11100 101
PUSH IY (5P-20 1Y ofofe | s
(sP-1) - 1Yy 11100 101
POP aq aan - (5P ofe]e 11 qq0 001 | 10
qay - (SP)
POP IX Xy - (SPe1) ofe]e nono| e
X (SP) 11 100 001
POPIY 1Yy (SPeT) ofefe noanao| e
vy - (sP) 11 100 001
EX DE, HL DE = HL ofe]e naoron| 4
EX AF AF AF - AF efefe 00 001000 | 4
EXX BC B8C ejeole 11 011 001 a Register bank and
DE ** DE suxihiary register
HL WU bank exchange
EX(SP) HL | He-(sPe1) ofefe 1100011 | 19
Lo (sP)
EX(SPLIX | IXy o (SPe1) ofe]e nono| 23
ey -~ sP) 11 100 O
EX (SP), 1Y IYN"(SP‘IP ol o|e ARIRARIR() 23
1Yy - (SP) ® 11 100 O
Lot (DE) - (ML) of i]e 1101101 16 | Load (HL into
DE - DE+1 10 100 000 (DE), increment the
HL- HLO pointers and decrement
8C - 8C-1 the byte counter (BC)
LDIR (DE) - (HL) ofo]e 1w 2 wec 0
DE - DE+1 10 110000 16 |mBC-0
HL - HLA
8C- BC-
Repeat unul
8C-0 o
o0 (DE) - (HL) of t]e 10| 16
DE - DE-1 10 101 000
HL- HL-
8C- 8C-1
LOOR (DE) - (HL) ofofe IRIRTITIN B3} 18c /0
OE - DE-1 10 11000 16 |1BC-0
HL - HL-
BC - BC-1
Repeat until
BC=0 oo
cpl A-(HL) A naoier| 16
HL - HLOY 10 100 001
8C: BC-1 ool
CPIR A-(HL) o]t naon| 2 1BC # Oand A # (HL)
HL+ HLO 12110000 16 | 1MBC-0or A= (ML
BC - BC-1
Repeat until
A= (HL)or
BC-0 50l
cPD A- KL [AR IRIRTTIRTIN BT
HL - HL-1 10 101 001
BC - BC-1

PAGE 56

APPENDIX I

: FLAGS 4 NO
MNEMONIC i:r:s:& 0P-CODE | o v COMMENTS
Z|P/vI S| N|H| 76 543 210 | CYCLES
CPDR A - (HL) . @ Q 1 11101 101 21 WBC + Dand A = (HL)
HL = HL-Y 10 111 001 16 11BC - Oor A= (HLI
8C: BC-1
Repeat unul
A (HL or
BC:0
ADD A, ¢ A A Pl vfifo 10 (009] - 4
ADD A, n A- Avn Hlrpvpifo 11 [000]) 110 7
ADD A (HLI | A~ A+(HL) | v o :]w[@agjo| 7
ADD A, (IX<df A=~ A+ (X+dl| vitlol:[nmonniof 19
10 [000] 116
e
ADD A, (1Y+d)| A - As(1Y+d) b I v o 1M 10 19
10 [000]110
S e
ADC A s A-Aesecy[)i vfi]o]s o1 s1sany of r,n.
suBs A-A-s Hlepvfrfa)e (HL), (1X+d),
SBC As AcAa-s-ev |l vl a]: oM (1Y +d) a5 shown for
AND 5 A- Ay of sp el ([0%%) ADD mnstruction
ORs A- AL ol:lPl:fofo og
XOR 5 A-A s ol:feltlo]o 00 The indicated bits
cPy A-s v o replace the 000 in
INC ¢ e gy ol V] o 00 4 the ADD set above
INC (HL) (HU - (HUer e) vf:] o 00 10fiog)f M
INC (1X+d) (1X+d) ~ . A2 o 11 011 101 23
(IXed)o1 00 110(100)
Pl
INC (1Y +d) 1Y)~ el vls]of:fnmman| 23
(1ved)e1 00 110[100]
" d
DECm memi . vl m 15 any of r. (HL),
m (IX+d), (1Y<d) as
shown for INC
Same format and
states as INC
Replace 100 with
101 1n OP code
ADDHL s | HL- Hiess | t|ef o] el o x| o0 w 00r| 11
ADC HL, ss HL: HLesseCY | v 0] x| 11 101 101 15
01 1 010
SBC HL, s HL-HL-ss-CY | 1]t V] 1) x| 11101 100 15
01 50 010
ADD 1X, pp IX - 1X + pp el ofefof x| 11 011101 15
00 pp1 001
ADD 1Y, rr Yo 1Y err felefefof x| 11 111101 15
00 rr1 001
INC s weossel ejlejeole]lefe| 00150 011 6
INCIX IX=1X 41 elolefe]e]e RARURIR[]] 0
00 100 011
INC 1Y 1Y == 1Y +1 efoeloefe]efle| 11 111101 10
00 100 011
DEC s -l el ele| eje| 00551 ON 6
DEC IX IX = 1X -1 M EIEIEI N K] 1 011 101 10
00 101 011
DECIY 1Y =1y 21 LIRS K] m oo 0
00 101 011
RLCA [©} @ tle]efe]ofo|o00o000111| 4 Rotate Irtt circular
D accumulator
RLA m 1lefelefo0]o0]| 000101 a Rotate left
A accumulator
RRCA l' e tfefefe]o]o]o0oor]| a Rotate right circular
A accumulator
RRA 1—tfefe | 1] ofefef o]0 00011) Rotate right
Y accumulator

PAGE 57

APPENDIX I

- P NO.
MNEMONIC i::‘fuuén I RADES. lory COMMENTS
c{z|ev] s {N|H |76 543 210 [CYCLES
RLC: 1lefeltjolenoonon] 8 Rotate left cicular
00 [000] ¢ regster ¢
ALC (ML) 1]t]|t jojojnooion| s
00 [060]110
RLE (1X+d) ril RN EREA RN L3 L RUCITRCIE B
1 001 011
IR Y d) % W @
00 [000]110
RLC {IY+d) tfrfeftfojo o 23
11 001 011
.4 -
,—J 00 [000]110
ALm Y= |t e[|t o]0 Instruction format and
™ MK AT states are as shown
for RLC.s. To form
new OP-code replace
g . Fii 18 000 of RLC.s with
shown code
RRm tlifeft]o]o
SLAm tfr]e|t]ofo
SRA m tfr]eft]ofo
SRL m t]i]e|tfofo
ALD s{eft]ofo]n0ri0n| 18 Rotate digit left and
01 101 111 right between the
accumulator and
location (HL) The
content of the upper
RRO eft|plt]ojo]nronin| 18 hatfiol dhe sceiimi=
01 100 1M1 lator 1s unatfected
DAA Converts acc. tjrjelt]|e]t |00 100111 a Decimal adjust
‘content into. accumulator.
packed BCO
lollowing add
or subtract
with packed
BCD operands
cPL A-A efle|ele|r]|1]o0 101 m| 4 Complement
aceumutator
{one’s complement)
NEG AcoA tlifv]i]t || e Negate acc. (1wo's
01 000 100 complement)
cCF .cy-cv t{e]ele|o|x]o0 1) Complement
carry flag
SCF cy e 1]efe|efojofoo 01| 4 Set carry flog
NOP No operation | [e [e]|e]|e]e |00 000000| &
HALT cPUnalted |0 |o|e]e|eje ot 00| @
o1 IFF -0 ole|e|o|e]e |t 10on| 4
] IFF -1 olefelefe]efrnmon]| «
Mo Setintorrupt [0 |o | oo |efe |11 100100 &
mode 0 01 000 110
M1 setinterrupt |o [o | oo le]e |11 100 001] 8
mode 1 01 010 110
M2 Setinterrupt |0 [e | o|o|e]e |1 101100} 8
mode 2 01 011 110
BITh, ¢ -7 elt|x|x|[o]rjrnooron] 8
o b o« B
BITb, (HL) z- MLy, et | x!x]o]1 | coron 12 oo1|C
0 b 10 e
BIT b, (1X+d) z--ux_m)h et x|{x]ofl1] 1o 20 ‘:“w:
11 001 0N 0L
. 4 - mla
01 b 10
BiTb, (tved)| z- Ve, o |t] x| x|afr o} 20 | b |BitTested
11 001 011 000 [0
- d . 0011
0102
01 b 10 onl3
100) 4
1015
0|6
miz

PAGE 58

APPENDIX I

symsoLic FLAGS 0P-CODE :‘:7 S—
OEERATION P s H | 76 543 210 | cveLes
SET DL, ¢ et AR e |11 001 0N 8
(e -
SETY. (ML) [(HLly =~ 1 ofe e |11 o01011| 15
J s o
SETb, (IXed)| (1Xed) + 1 ofe o [monoy| 23
11 001 011
= @ @
e 1o
SET D, (174d) (lV)dDb-(ofle o1 Mman 23
11 001 011
- 4 =
0 » 110
RESb. m To form new OP-code
reploca 11 of SET b,
with 10 Flags and
time states for SET
struction
Pan PC - an ofe e [1 00001 | 10 N
B
P cc.nn 1f condition ofe o1 e« 00| 10 Condition
1 true - = 0C0 | NZ non zero
PC~ nn o - 001 | Z zero
otherwise 010 | NC non carry
continue 011 Caarry
100 | PO parity odd
101 | PE parity even
110 | P sign positive
111 [M sign negative
JRe PC—PCoe ofe o |00 011 000| 12
= ey
JRC, e Hceo, ofe ® | 00 111 000 7 1t condition not met
continue - w2 -
Me=a, 12 If condition 15 met
PC-PCoe
JRNC, ¢ e, ofe e |00 10000| 7 1f condition not met
continue w2 -
Heeo, 12| 1f condition is met
PC-PCee
RZe wzs=o ofe e |00 101000 7 1t condition not met
continue - e -
HZ=1 12 1t condition s met
PC-PCee
JRNZ,e Wz, ofe o |00 100000 7 If condition not met
continue -2 -
Hz=o0, 12 1f condition met
PCPCee
W (HL) PC-HL ofe e |1 0r001| @
P ax) PC - 1X ofe ef1nmono| &
11 101 001
®ay) PC- 1Y ofe el man| 8
11 101 001
DINZe 8- B-1 ofe o |00 00000 & e =0
HB=0, - -2 ~
continue
1B #0, 13 HB=0
PC-PCoe
CALL nn (5P-1) - PCyy ofe o [noorio| 1
(sP-2) - PC_ - -
PC= an -
CALL cc, nn 1f condition ole . 1M e 100 10 I ccis false
ccis false S
e - n - 7 1 ccis true
otherwise
same a1
CALL nn
RET PCL- (sP) o] * |11 001001 10
PCye (SPe1)
RET o 1t condition of o o1 e B It ce n fatse
cc s false
" 1 ec i true
Condition
NZ non tero
001 | Z zero
RETI Return from ole e | 11101100 1 010 | NC non carry
nterrupt 01 001 101 011 | C carry
RETN Return from oo oo on | ae [100150 ey odd
I’::':':;:.u' 01 000 101 110 | P sign positive .
111 | M sgn negative

PAGE 59

APPENDIX I

N NO
MNEMONIC Z;EM:T;:SN FLacs 0F-CODE {5 ¢ COMMENTS
clzfenfs|n]|u] 76 sa3 210]cveres
RST p 1sp-n-pCy |ofefefafe]efn « M "
1sP-2) - PCL
PCy- 0
PCy - P
INA, (n) A (n) IEEEERENES K] n onon n ntwoAg Ay
oo Accto Ag Ajg
IN: (C) e (c) o |! Pl of: 11101 100 12 CloAg Ay
11 110 only 01 ¢ 000 BoAg Agg
the flags will
be affected @
IN (HL) - (C) e x| xfr]x]| 010 % CoAg Ay
8- B 10 100 010 BloAg Ag
HL- HL 1
INIR (HL) - (C) e |1 x| x|1] x| a0 2 CwoAg Ay
8- 81 10 110 010 BoAg - Ag
HL - HL 1 16
Repeat unul
B8:=0
©]
IND (HL) - (C) e | x| x| v x| w00 16 Cio Ay Ay
B - 81 10 101 010 BloAg Ag
HL - HL-1
INDR (HL) - (C) e | x{x 1] x] 00 2 CwoAg Ay
8- 81 10 111 010 BloAg Ag
HL - HL-Y 16
Repeat until
8.0
OUT (n). A - A efe|efe|ef[e] 110100 n nwoAy Ay
Con Accto Ag Ajg
ouT (C), ¢ -« e|o|e|eo|o|e 1101 100 12 CuoAg Ay
01 « 001 BroAg Ayg
(©]
outt i1+ (ML) of x| x| x] 0o 16 CwAg Ay
8- 81 10 100 011 B Ag A
HL ML+
OTIR ©r- ML el x| x[1] x| o] 2 Cong Ay
8- 8 10 110 011 Bl Ag Ayg
ML HL 1 %
Repeat until
8
@
ouTD 1C) - (HL) ol x| x| x] 100t 16 CwAg Ay
8- 81 10 100 O BloAg Ayg
HL - HLY
OTDR (C) - (HL) el x| x| 1| x| o0 21 CloAg Ay
8- 81 10 1on BloAg Ag
HL- HL 16
‘' Repeat unul
8-

Notes 1.+ means any of the registers A, B, C. D E. H, L
5515 any of the register pas BC. DE. HL_ SP
18 any of the register pairs BC, DE_1Y, SP
T3 PIV flag 13 0 f the result of BC-1 - 0, otherwise P/V 1
{2) Ztagus 111 A = (HL), otherwise Z : 0
(@) 1 the result of B—1 = 0, the Z flag s set. otherwise it 1 reset
e represents the extension in the relative addressing mode
€15 2 signed two's complement number in the range = -126, 129
-2 in the op-code provides an effective address of pcte as PC 13 incremented by 2 prior 1o the addition of ¢
The notation sy, indicates bit b (0 10 7) of location s

Flag Notation @ = flag not affected, O - flag reset, 1 = flag set, X < flag s unknown
1= flag 1s affected according 10 the result of the operation

PAGE 60

APPENDIX I

280—CPU INSTRUCTION SET

o8J SOURCE
CODE STATEMENT OFERATION
8E ADC AHL) Add with Carry Oper
DD8EOS ADC A.(1X+d) and to Acc
FDBEOS ADC A (1Y +d)
8F apc AA
88 ADC AB
89 ADC AC
8A ADC A.D
8B ADC AE
8C ADC AH
8D ADC AL
CE20 ADC A.n
ED4A ADC HL.BC Add with Carry Reg
EDSA ADC HL.DE Pair to HL
EDBA ADC HL,HL
ED7A ADC HL.SP
86 ADD A(HL) Add Operand to Acc
DD8605 ADD A (1X+d)
FD8605 ADD A (1Y +d)
87 ADD A.A !
80 ADD AB
81 ADD AC
82 ADD A.D
83 ADD AE
84 ADD AH
85 ADD AL
C620 ADD A.n
09 ADD HL,BC Add Reg Pair to HL
19 ADD HL.DE
29 ADD HL.HL
39 ADD HL.SP
DDO09 ADD IX.BC Add Reg Par to IX
DD19 ADD IX.DE
DD29 ADD IX,1%
DD39 ADD IX.SP
FDO9 ADD 1Y.BC Add Reg Pair to 1Y
FD19 ADD 1Y .DE
FD29 ADD 1Y,1y
FD39 ADD 1Y sp
A6 AND (HL) Logical "AND’ of
DDAB05 AND (1X+d) Operand and Acc
FDAB05 AND (1Y +d)
A7 AND A
A0 AND
Al AND C
A2 AND o]
A3 AND E
A4 AND H
a5 AND L
E620 AND n
CB4a6 BIT 0.(HL) Test Bit b of Location
DDCBOS46 BIT 0.(1X+d) or Reg
FDCB0546 BIT 0,(1Y +d)
ce47 BIT 0.A
CB40 BIT 0.8
CBa1 BIT 0.C
CcBa2 BIT 0.0
CB43 BIT 0 E
CBa4 BIT 0.H

PAGE 61

APPENDIX I

osJ

SOURCE

OPERATION

CODE STATEMENT
cB45 BIT o.L Test But b of Location
CB4E 8IT 1{HL) or Reg.
DDCBOS4E BIT 1.(1X+d)
FDCBOSAE BIT 10Y+d)
CB4F BIT 1.A
cB48 BIT 1.8
cBag 8IT 10
CB4A BIT 1.0
cB4B BIT 3
cB4c 8IT 1H
cB4D BIT 1L
CBS56 BIT 2,(HL)
DDCBOSS6 BIT 2,(1X+d)
FDCBOSS6 BIT 2,(1Y+d)
cB57 BIT 2.A
CB50 BIT 28
cBS51 BIT 2.
cB52 BIT 2.0
cBs3 BIT 2,E
CB54 BIT 2.H
CBS55 BIT 2L
CBSE BIT 3,(HL)
DDCBOSSE BIT 3,(1X+d)
FDCBOSSE BIT 3,(1Y+d)
CBSF BIT 3.A
cB58 8IT 3.8
cB59 BIT ac
cB5A BIT 30
cB58 BIT 3E
cBsC BIT 3H
cB5D BIT 3L
CB66 BIf a,(HL)
DDCBO566 BIT 4,(1X+d)
FDCB0S66 BIT 4,1Y+d)
cB67 BIT aA
CB60 BIT 48
cBe1 BIT ac
cB62 BIT ap
CB63 BIT 4E
cB64 8IT aH
CB65 BIT aL
CB6E BIT 5,(HL)
DDCBOS6E BIT 5,(1X+d)
FDCBOS6E BIT 5,(1Y+d)
CB6F BIT 5.A
cB68 BIT 5.8
CB69 BIT 5.C
C86A BIT 5.0
cB68B BIT 5.E
cB6C 8IT 5.H
cB6D BIT 5.L
cB76 8IT 6.(HL)
DDCBOS76 BIT 6.(1X+d)
FDCBO576 BIT 6.(1Y+d)
cB77 BIT 6.A
c870 BIT 6.8
cB71 BIT 6.C
cB72 BIT 6.0
cB73 BIT 6.E
cB74 BIT 6.H
CB7S BIT 6.L
CB7E BIT 7.(HLI
DDCBOS7E BIT 7,01X+d)

PAGE 62

APPENDIX I

oBJ SOURCE CFERATION
CODE STATEMENT
FDCBOS7E BIT 7.01Y +d) Test Bit b Location
CB7F BIT 7.A or Reg
carg B!'T 78
cB79 BIT 7.c
CB7A B!T 7.0
cs78 BIT LE
c87Cc BIT 7H
CB870 B!T 7.0
DC8405 CALL Cun Call Subroutine at
FC8405 CALL M.nn Location nn if Condt:
548405 CALL NC.nn ton True
C48405 CALL NZ nn
' Fa8405 CALL P.n
EC8405 CALL PE.nn
E48405 CALL PO.nn
CC8405 CALL Z.nn
CD8405 CALL nn Unconditional Call to
Subroutine at nn
3F CCF Complement Carry
Fiag
BE cp (HL) Compare Operand
DDBEO5 cp (1X+d) with Acc
FDBEOS ce (1Y +d)
BF ce A
B8 ce B
B9 ce (o}
BA cp D
BB ce E
BC cp H
BD cp L
FE20 ce n
EDA9 CPD Compare Location
(HL) and Acc
Decrement HL and BC
EDB9 CPDR Compare Location
(HL) and Acc. Decre
ment HL and BC,
Repeat unul BC = 0
EDA1 CPI Compare Location
(HL) and Acc., Incre
ment HL and Decre
ment BC
EDB1 CPIR Compare Location
(HL) and Acc. Incre-
ment HL, Decrement
BC, Repeat until
BC =0
2F CPL Complement Acc (1's
Comp)
27 DAA Decimal Adjust Acc
35 DEC (HL) Decrement Operand
DD3505 DEC (1X+d)
FD3505 DEC (1Y +d)
3D DEC A
05 DEC B
oBs DEC BC
oD DEC C
15 DEC o]
18 DEC DE

PAGE

63

APPENDIX I

08J SOURCE OPERATION
CODE STATEMENT
10 DEC E Decrement Operand
25 DEC H
28 DEC HL
DD28B DEC 1X
FD28B DEC 1y
20 DEC L
38 DEC SP
F3 o]} Disable Interrupts
102E DJINZ e Decrement B and
: Jump Relative 1f B 90
FB El Enable Interrupts
E3 EX (SP),HL Exchange Location
DDE3 EX (SP),IX and (SP)
FDE3 EX (SP) 1Y
08 EX AF AF’ Exchange the Con-
tents of AF and AF’
EB EX DE HL Exchange the Con-
tents of DE and HL
D9 EXX Exchange the Con-
tents of BC.DE HL
with Contents of
BC',DE’ . HL" Respec
tively
76 HALT HALT (Wait for Inter-
rupt or Reset)
ED46 ™M (] Set Interrupt Mode
EDS56 ™M 1
EDSE M 2
ED78 IN A.(C) Load Reg with Input
ED40 IN B.(C) from Device (C)
ED48 IN c.ic
EDS0 IN D.(C)
EDS8 IN E.(C)
ED60 IN H.(C)
ED68 IN L.(ch
34 INC (HL) Increment Operand
DD3405 INC (IX+d)
FD3405 INC (1Y +d)
3C INC A
04 INC B
oz INC BC
oc INC Cc
14 INC D
13 INC DE
1C INC E
24 INC H
23 INC HL
DD23 INC X
FD23 INC Y
2C INC L
33 INC SP
DB20 IN A.ln) Load Ace with
Input trom Device n
EDAA IND Load Location (HL)

with Input from Port
{C), Decrement HL
and B

PAGE

64

APPENDIX I

oeJ SOURCE OPRRTION
CODE STATEMENT
EDBA INDR Load Location (HL)
with Input from Port
{C). Decrement HL
and Decrement B,
Repeatuntu B 0
EDA2 INI Load Location (HL)
with Input from Port
(C). Increment
HL and Decrernent B
EDB2 INIR Load Location (HL)
with Input from Port
(C), Increment HL
and Decrement B,
Repeatunul 8 0
E9 JP (HL) Unconditional Jump
DDE9 JP (1x) to Location
C38405 JpP nn
FDE9 JP (y)
DAB405 JP C.on Jump to Location 1f
FAB405 JP M,nn Condition True
D28405 JpP NC.nn
C28405 JpP NZ,nn
F28405 Jp P.an
EAB405 JpP PE,nn
E28405 JpP PO,nn
CAB405 JP Z,nn
382E JR Ce Jump Relative to
302E JR NC.e PC+e 1f Condition
202€ JR NZe True
282E JR Ze
182€ JR e Unconditional Jump
Relative to PC+e
02 LD (8C),A Load Source to Des-
12 LD (DE).A tination
77 LD (HL)L.A
70 LD (HL).B
n LD (HL),C
72 LD (HL),D
73 LD (HL)E
74 LD (HL) H
75 LD (HL).L
3620 LD (HL)n
DD7705 LD (I1X+d) A
DD7005 LD (1X+d),B
DD7105 Lo (IX+d),C
DD7205 LD (1X+d),D
DD7305 LD (I1X+d) E
DD7405 LD (IX+d) H
DD7505 LD (1X+d),L
DD360520 LD (1X+d).n
FD7705 LD (1Y+d) A
FD7005 LD (1Y+d),B
FD7105 LD (1Y+d),C
FD7205 LD (1Y+d),D
FD7305 LD (1Y+d) E
FD7405 LD (1Y +d) H
FD7505 LD (1Y+d),L
FD360520 LD (1Y +d),n
328405 LD (nn) A
ED438405 LD (nn),BC

PAGE 65

APPENDIX I

o8y SOURCE
CODE STATEMENT ORERATION
ED538405 LD (nn) DE Load Source to Des-
228405 LD (nn) HL unation
DD228405 LD (nn),1X
FD228405 Lo (nn) 1Y
£D738405 Lo (nn).SP
0A LD A.(BC)
) Lo AL(DE)
7€ LD AHL)
DD7E0S Lo AlIX+d)
FD7E05 Lo AlIY+d)
3A8405 LD A,(nn)
7F LD AA
78 LD A8
79 Lo AC
7A LD A.D
78 Lo AE
7C Lo AH
EDS57 LD Al
7D) AL
3E20 LD An
EDSF LD AR
46 LD B.(HL)
DD4605 LD B,(1X+d)
FD4605 Lo B(1Y+d)
47 Lo B.A
0 Lo 8.8
a1 Lo B.C
42 LD 8.0
43 Lo B.E
44 LD B.H
45 Lo B.L
0620 Lo B.n
ED4BB40S LD 8C,(nn)
018405 LD BC.nn
4€ LD C.(HL)
DD4E0S Lo C.0X+d)
FD4EO0S LD clv+d)
4F LD cA
48 LD cB
49 Lo cc
an LD c.o
a8 LD CE
ac Lo cH
40 LD c.L
0E20 Lo Can
56 LD D.(HL)
DD5605 Lo D.(1X+d)
FD5605 Lo D.(IV+d)
57 LD D.A
50 LD 0.8
51 Lo o.c
52 Lo 0.0
53 Lo D.E
54 LD D.H
55 Lo oL
1620 LD D.n
ED5BB405 LD DE,(nn)
118405 LD DE.n
5E Lo E,(HL)
DD5EO05 LD E.(IX+d)
FDSE05 Lo E(1Y+d
SF Lo EA
58 LD £.8
59) E.C

PAGE 66

APPENDIX I

oBJ SOURCE
CODE STATEMENT QEERATION
5A LD E.D Load Source to Des-
5B LD E.E tnation
5C LD EH
5D LD E.L
1E20 LD En
66 LD H,(HL)
DD6605 LD H,(IX+d)
FD6605 LD H.(1Y +d)
67 LD H.A
60 LD H.B
61 LD H.C
62 LD H.D
63 LD H.E
64 LD HH
65 LD H.L
2620 LD H.n
2AB405 LD HL (nn)
218405 LD HL.nn
ED47 LD 1A
DD2AB405 LD 1X.(nn)
DD218405 LD IX,nn
FD2A8405 LD 1Y.(nn)
FD218405 LD 1Y, nn
6E LD L.(HL)
DD6E0S LD L.(1X+d)
FD6EOS LD LIY+d)
6F LD LA
68 LD LB
69 LD L.C
6A LD LD
68 LD LE
6C LD LH
6D LD Lk
2E20 LD L.n
EDA4F LDRA
ED7B8405 LD SP.(nn)
F9 LD SP.HL
DDF9 LD SP.IX
FDF9 LD SPIY
318405 LD SP.nn
EDA8 LDD Load Location (DE!
with Location (HL),
Decrement DE HL
and BC
EDB8 LDDR Load Location (DE)
with Location (HL),
% Repeat until BC = 0
EDAO LDt Load Location (DE)
with Location (HL),
Increment DE HL,
Decrement BC
EDBO LDIR Load Location (DE)
with Location (HL),
Increment DE HL,
Decrement BC and
Repeat until BC = 0
ED44 NEG Negate Acc (2's
Complement)
00 NOP No Operation
86 OR (HL) Logical "OR" of
DDB60S OR (IX+d) Operand and Acc.

PAGE

67

APPENDIX I

osJ SOURCE OPERATION
CODE STATEMENT

FDB60S OR (1Y +d) Logical “OR" of

B7 OR A Operand and Acc.

BO OR B

81 OR c

B2 OR D

B3 OR E

B4 OR H

BS OR L

F620 OR n

ED8B OTDR Load Output Port (C)
with Location (HL)
Decrement HL and B,
Repeat until B = 0

EDB3 OTIR Load Output Port (C)
with Location (HL),
Increment HL, Decre-
ment B, Repeat until
B=0

ED79 ouTt (C)A Load Output Port (C)

ED41 ouT (c).B with Reg.

ED49 out (c).c

ED51 ouT (C).D

EDS9 ouTt (C)LE

ED61 ouTt (C)LH

ED69 ouTt [[9RS

D320 ouTt (n),A Load Output Port (n)
with Acc.

EDAB ouTD Load Output Port (C)
with Location (HL),
Decrement HL and B

EDA3 ouT! Load Output Port (C)
with Location (HL),
Increment HL and
Decrement B

F1 POP AF Load Destination

c1 POP BC with Top of Stack

D1 POP DE

Et. POP HL

DDE1 POP IX

FDE1 POP Y

FS PUSH AF Load Source to Stack

Ccs PUSH BC

DS PUSH DE

ES PUSH HL

DDES PUSH 1X

FDES PUSH 1y

CB86 RES 0,(HL) Reset Bit b of

DDCB0S86 RES 0,(IX+d) Operand

FDCBO0S586 RES 0,(1Y+d)

cB87 RES 0.A

CcB80 RES 0.8

cB81 RES 0.C

CB82 RES 0.0

cB83 RES 0.E

CE84 RES OH

cB85 RES o.L

CB8E RES 1,(HL)

DDCBOS8E RES 1.(1X+d)

FDCBOS8E RES 1.0Yed) -

CB8F RES 1.A

PAGE 68

APPENDIX I

o8 SOURCE OPERATION

CODE STATEMENT
cB88 RES 1.8 Reset Bit b of
ce89 RES 1C Operand
cBsA RES 1.0
cB88 RES 1€
cBsc RES 1M
8380 RES 1L
896 RES 2.(KL
DDCB0596 RES 2.(1X+d
FDCBOS96 ~ RES 2(1Y+d
<897 RES 2.A
cB90 RES 2.8
cB91 RES 2.0
cB92 RES 2.0
893 RES 2.€
cB94 RES 2.H
cB9s RES 2L
CBYE RES 3.(HL)
DDCBOS9E ~ RES 3.(IX+d
FDCBOS9E ~ RES 3(IV+d
CBYF RES 3A
cBo8 RES 3.8
€899 RES 3C
cB9A RES 3D
cB98 RES 3.E
cBoc RES 3.M
cB90 RES 3L
cBA6 RES 4.(HL
DDCBOSA6 RES 4(IX+d
FDCBOSA6 RES 4.(IY+d
csA7 RES 4.A
cBAO RES 4.8
cBA1 RES 4.C
cBA2 RES 4D
DBA3 RES 4.
cBA4 RES 4H
cBAS RES 4L
CBAE RES 5.(HL)
DDCBOSAE RES 5.(iX+d
FDCBOSAE RES 5(IY+d)
CBAF RES 5A
cBA8 RES 58
cBA9 RES 5.C
cBAA RES 5D
csaB RES S.€
cBAC RES 5H
cBAD RES s.L
cBB6 RES 6.(HLI
DDCBOSBE RES 6.(IX+d
FDCBOSB6 ~ RES 6.(1Y+d)
cBB? RES 6.A
88O RES 6.8
cBB1 RES 6.C
cBB2 RES 6.0
883 RES 6.E
ceBa RES 6H
cess RES 6L
CcBBE RES 7.HLI
DDCBOSBE ~ RES 7.(1X+d)
FDCBOSBE ~ RES 7.(IY+d
cBBF RES 7.A
cBB8 HES 1.8
cBBY RES 71.C
cBBA RES 7.0

PAGE 69

APPENDIX I

03 SOURCE OPERATION
CODE STATEMENT

cB8B RES TE Reset Bit b of

CcBBC RES 7H Operand

CB8D RES 7.5

c9 RET Return from
Subroutine

08 RET G Return from

F8 RET M Subroutine if Condi

Do RET NC ton True

co RET NZ

FO RET P

E8 RET PE

EO RET PO

c8 RET 2z

ED4D RETI Return from Interrupt

ED45 RETN Return irom Non-
Maskable Interrupt

CB16 RL (HL) Rotate Left Through

DDCB0516 RL, (I1X+d) Carry

FDCBO516 RL (1Y +d)

cB17 RL A

CcB10 RL B

cB11 RL c

cB12 RL o)

cB13 RL E

cB14 RL H

CB15 RL L

17 RLA Rotate Left Acc
Through Carry

CBO6 RLC (HL) Rotate Left Circular

DDCBO0506 RLC (1X+d)

FDCB0506 RLC (1Y +d)

CcBO7 RLC A

CBOO RLC B

CBO1 RLC c

CB02 RLC D

CBO3 RLC (=

CBO4 RLC H

CBOS RLC L

07 RLCA Rotate Left Circular
Acc.

ED6F RLD Rotate Digit Left and
Right between Acc. and
and Location (HL)

CB1E RR (HL) Rotate Right Through

DDCBOS1E RR (1X+d) Carry

FDCBOS1E RR (1Y+d)

CB1F RR A

cB18 RR B

cB19 RR €

CB1A RR D

[o1:31:) RR E

cB1C RR H

CB1D RR L

1F RRA Rotate Right Acc
Through Carry

CBOE RRC (HL) Rotate Right Circular

DDCBOSOE RRC (1X+d)

FDCBO50E RRC (1Y +d)

CBOF RRC A

PAGE

70

APPENDIX I

08/ SOURCE OPERATION
CODE STATEMENT
CcBO8 RRC B Rotate Right Circular
CB09 RRC [
CBOA RRC D
CBOB RRC E
csoC RRC H
CBOD RRC L
OF RRCA Rotate Right Circular
Acc
ED67 RRD Rotate Digit Right and Left
Between Acc. and Location (HL)
C7 RST 00H Restart to Location
CF RST 03K
D7 RST 10+
OF RST 18H
E7 RST 20H
EF RST 28H
F7 RST 30H
FE RST 38H
9E SBC A (HL) Subtract Operand
DD9EOS SBC A (1X+d) from Acc. with Carry
FDYEOS sBC A (1Y+d)
9F sBC AA
98 SBC AB
99 S8C AC
9A SBC AD
98 s8C AE
9C s8C AH
90 s8C AL
DE20 SBC An
ED42 s8C HL.BC
EDS2 S8C HL,DE
ED62 SBC HLHL
ED72 SBC HL.SP
37 SCF Set Carry Flag (C - 1)
CBC6 SET 0.(HL) Set Bit b of Location
DDCBOSC6 SET 0,(1X+d)
FDCBO5C6 SET 0,(1Y+d)
CcBC7 SET 0.A
cBCo SET 0.8
[of:103)] SET 0.C
cBC2 SET 0.0
CBC3 SET 0.E
CBC4 SET oH
CBCS SET o.L
CBCE SET 1,(HL)
DDCBOSCE SET 1,(1X+d)
FDCBOSCE SET 1,(1Y+d)
CBCF SET 1A
cecs SET 1.8
c8ec9 SET 1.C
CBCA SET 1.0
cBCB SET 1.€
csccC SET 1H
cBscD SET 1.L
CBD6 SET 2,(HL)
DDCBOSDE SET 2,(1X+d)
FDCBO5D6 SET 2,(1Y+d)
c8D7 SET 2.A
CBDO SET 2,8
c8D1 SET 2.C
cBD2 SET 2.0

PAGE 71

APPENDIX I

osJ

SOURCE

OPERATION

CODE STATEMENT
cBD3 SET 2,E Set Bit b of Location
CcBD4 SET 2.H
CBDS SET 2L
cBD8 SET 3.8
CBDE SET 3.(HL)
DDCBOSDE SET 3.(1X+d)
FDCBOSDE SET 3,(1Y+d)
CBDF SET 3.A
CBD9 SET 3.C
CBDA SET 3.0
cBsDB SET 3.E
CcBDC SET 3H
CBDD SET 3.L
CBE6 SET 4,(HL)
DDCBOSE6 SET 4,(1X+d)
FDCBOSE6 SET 4,(1Y+d)
CBE7 SET 4.A
CBEO SET 4.8
CBE1 SET 4.C
CBE2 SET 40
CBE3 SET 4.E
CBE4 SET 4.H
CBES SET 4L
CBEE SET 5.(HL)
DDCBOSEE SET 5,(1X+d)
FDCBOSEE SET 5,(1Y+d)
CBEF SET 5A
CBE8 SET 5.8
CBE9 SET 5.C
CBEA SET 5.0
CBEB SET 5.E
CBEC SET 5H
CBED SET 5.L
CBF6 SET 6,(HL)
DDCBOSF6 SET 6.(1X+d)
FDCBOS5F6 SET 6,(1Y+d)
CBF7 SET 6.A
CBFO SET 6.8
CBF1 SET 6.C
CBF2 SET 6.0
CBF3 SET 6.E
CBF4 SET 6.H
CBF5 SET 6.L
CBFE SET 7.(HL)
DDCBOSFE SET 7.(1X+d)
FDCBOSFE SET 7.01Y+d)
CBFF SET 7.A
CBF8 SET 7.8
CBF9 SET 7.C
CBFA SET 7.0
CBFB SET 1€
CBFC SET 7.H
CBFD SET 7.L
CB26 SLA (HL) Shift Operand Left
DDCB0526 SLA (I1X+d) Arithmetic
FDCB0526 SLA (1Y +d)
cB27 SLA A
CB20 SLA B
cB21 SLA (o}
cB22 SLA D
cB23 SLA E
cB24 SLA H
CcB25 SLA L

PAGE 72

APPENDIX I

oBJ

SOURCE

OPERATION
CODE STATEMENT
CB2E SRA (HL) Shift Operand Right
DDCBOS52E SRA (1X+d) Arithmetic
FDCBO52E SRA (1Y +d)
CB2F SRA A
cB28 SRA B
CcB29 SRA C
CB2A SRA D
cs28 SRA E
cB2C SRA H
CB2D SRA L
CB3E SRL (HL) Shift Operand Right
DDCBO53E SRL (1X+d) Logical
FDCBOS3E SRL (1Y +d)
CB3F SRL A
CcB38 SRL B
CB39 SRL C
CB3A SRL [s]
CcB3B SRL E
CB3C SRL H
CB3D SRL L
96 sus (HL) Subtract Operand
DD9605 sus (I1X+d) from Acc
FD9605 suB (1Y +d)
97 sus A
90 sus B
91 sus €
92 sus o]
93 suB E
94 suB H
95 suB L
D620 SuB n
AE XOR (HL) Exclusive "OR""
DDAEOS XOR (I1X+d) Operand and Acc
FDAEOS XOR (1Y +d)
AF XOR A
A8 XOR B
A9 XOR c
AA XOR D
AB XOR E
AC XOR H
AD XOR L
EE20 XOR n

Example Values

nn EQU
EQU
EQU

584H
5
20H
30H

PAGE 73

APPENDIX II

&
O
&
|
>
2z
O
O
i
<C
=
O
L
()
O
T
>
i
L]

562

€ee

161

661

4L L2l £ S6 4€ €9 el L€
nse 2ee 3g 061 36 851 3L 921 35 16 3€ 29 3l of
€62 122 ad 681 a6 L1 a. qel as €6 ag 19 at 62
252 x (004 od 88l 26 961 oL nel 26 26 of 09 oL 82
162 ud 612 ad L8l 86 44 aL €21 a5 16 g€ 65 dL L2
052 ¥a gLz ve 981 ¥6 st VL zel S 06 vE 85 L 92
612 64 Lie 64 sgl 66 €61 6L et 65 68 6€ LS 61 =4
ghe 8a 912 gd gl 86 261 gL 4] 85 88 8t 95 gL he
Lhe La s1e Ld €81 L6 161 LL 6L1 LS L8 LE 29 Ll €2
9ne oa ne 94 281 96 oSt 9L gLl 95 98 9t s 9L 22
She sa €12 s 18l S6 bt GL LiL 29 S8 43 €6 [12
nhe ha 212 e ogL h6 ghl L 9Ll 1S g e 25 ht 0z
£ne €a e €q 6L1 €6 Lhl €L Sl €5 €8 €€ 16 €L 6L
2ne ea otz cd 8LL 26 9l 2L Ll 25 28 43 05 4 gL
Lhe ta 602 g Ll L6 St 1L €1l 16 18 L€ 6h Ll Ll
one 0d 802 08 9LL 06 finl oL 2L 0 08 02 gh oL 9L
6t2 kel Loz ov SLL 48 £ht 49 Lt an 6L a2 Lt 40 Sl
g€z a0 902 v Ll ag 2hl 39 oLt ki 8L 4 9 30 tl
LE2 a s02 av €L1 as Lht a9 601 an LL @ S ao €1
9€2 99 hoZ v i 08 onl 29 8oL on 9L 22 tit 20 2L
4) €02 av LLL g8 6€L 49 Lot dh SL 24 € €0 1L
nee 2 202 v 0LL vg gEL V9 901 vh hl 4 2h Vo oL
£€e 60 102 6v 691 68 LEL 69 soL 6 €L 62 Lh 60 6
cez 80 002 8V 891 88 9€1 89 1oL gh 2L 82 ot 80]
1€2 Lo 661 Ly L9L Lg GeL L9 €01 Ly 1L L2 6€ Lo L
oge 90 861 9v 991 98 el 99 2oL 9n oL 92 8t 90 9
622 < L6l SV S9L S8 £EL 59 Lot Sh 69 (=4 L€ S0 S
g2e hd 961 hd h9t hg 2€L 19 0ot hh 89 he 9€ ho h
Lee € S6L €V €91 £8 LEL €9 66 € L9 €2 49 €0 €
gee 2l hbL 4] 291 28 0€L 29 86 2h 99 22 e 20 2
see 10 €61 Ly 191 18 621 19 L6 Ih 59 12 19 10 L
w2z 00 261 ov 091 08 gzl 09 96 on 9 oz 2€ 00 0
03Qq X3H 03q X3H 09Q X3H 09q X3H 09 X3H 03Qq X3H 29Qq X3H Pl

SanTeA 934Qq 3UO TTE J0J TeWTdd] 03 X3H WOJJ UOTSJIAUOD B ST BUTMOTTOJ SYL

PAGE 74

APPENDIX II

31xd

arxd arxd
L9Sh €210 L9Sh €210 L9Sh €210
Gl J otz J ong‘e k| ohr‘L9 J 0h0‘€Eg6 d on9‘geLisL 4
fiL | hee 3 hgs‘€e ! hhE LS ! hOS‘LL6 3 190089 ‘tiL 3
€L a 802 a g2t ‘e a 8h2 ‘€S a 896158 a 88h‘LEY‘EL a
2L) 261 0 2Lo‘E) 261 6Y 0 2en‘ogL 2 2L egsal 5]
LL g 9LL g 9Lg‘e g 950°Sh g 968‘02L g 9EE‘REGLL g
oL v 091 v 095‘2 v 096 ‘0h v 09€ ‘SS9 v 09L°Sgh ‘oL v
6 6 thl 6 hoE ‘2 6 198 ‘9€ 6 128685 6 h8L‘LER‘E 6
8 8 galL 8 8ro‘2 8 89L°2€E 8 882 ‘ h2s 8 809‘88E‘g 8
L L 2Lt L 26L L L 2L9‘ee L 2SL gGh L 2E0‘onE‘L L
9 9 96 9 9EG‘L 9 9.5'h2 9 9l2‘€6€ 9 9Sh 1629 9
S S 08 S 082‘L 5 ogh‘oe S 089°‘L2E S 088‘2h2‘s S
f ft 9 t heo‘tL h hgE ‘9L t thl ‘292 h HOE‘h6L h
€ € gh € 89.L € ggz el € 809961 € gaLshL g €
2 2 2 2 2Ls 2 26L‘g 2 2Lo1EL 2 2sLL60'2 2
L L 9l L 962 L 960 . L 9£5°G9 L 9L5°gh0‘1 L
0 0 0 0 0 0 0 0 0 0 0 0
034 = XaH 034 = XaH 03 = XTH 03d = XIH 03d = XaH 03d = X3H
L 2 € h S 9

PAGE 75

34 6Ge 4d €ee Jd L6l 46 6Gt aL L2\ a5 G6 J€ £9 at L€
a4 hGe gl 222 ad 061 36 86l al 921 35 16 3g 29 cfl o€
a4 €62 aa 122 ad 681 ae LSL a g2l as €6 at 19 at 62
04 262 X oee od 88t 26 961 oL hel 26 26 of 09 oL g2
a4 162 ad 6Le g LgL 46 SSL 4L 4 =(S 16 219 65 gL L2
LK 0s2 va gLz vd 98l V6 hGlL VL 2zl e 06 VE 85 Vi 92
64 6412 6d L2 64 Ggl 66 €61 6L L2t 65 68 6€ LS 61 <2
84 gne 8d 9Le gd hgl 86 26l 8L ozt 85 88 g8t 95 8L he
La Lh2 La sz Ld £gl L6 LGl LL 6LL LS L8 L€ <9 Ll €2
gkt 9h2 od nLe 9d 28l 96 0GL 9L gLl 95 98 9€ hG 9l 22
(8 She sa €le sd LgL G6 6hl GL Ll Gs S8 Se 139 Gl 12
4 fhe hd cLe hd ogL 6 ghl fil 9Ll 1S hg hE es | onl 02
€d the €a Le €d 6LL £6 Lhl €L GLL €q €8 €€ 1S €1 6L
24 zhe 2a oLz cd gLL 26 onL 2L il 2S 28 2€ 0S 2L gl
L4 Lhe ta 602 Lg LLL L6 Sl 1L €Ll e 13 LE 6h Lt L
04 o2 0d 802 0d 9Ll 06 hhl oL 2Ll 0S 08 02 gt oL 9l
a3 62 40 L02 oy GLL 48 Ehl a9 LiL dn 6L I Lk 40 Gl
| g€z 40 902 qv Ll a8 chl 49 oLt an 8L a2 9h 30 hi
e LE2 as coe av €LL as Lht as 601l ah LL @ Sh ao €L
foc| g€z 20 toe ov A 28 onl 09 801 on 9L 2 th 20 2L
sl ge2) €02 av LLL 48 6EL g9 Lol gh Gl ferd en g0 Lt
V3 hee YO 202 vV oLL Vg gtlL V9 901 Wi tl Ve ch YO oL
63 1354 60 102 6v 691 68 LEL 69 soL 6h €L 62 L 60 6
83 cee 80 002 8V 891 88 9€lL 89 ol gt 2L 82 Of 80 8
L3 L€2 L2 661 Ly L9l Lg GeL L9 €oL Lh LL L2 6€ L0 L
93 o€z 90 861 9v 99L 98 rEL 99 2oL 9t oL 92 el 90 9
°c| 622 S0 L61 Sy S9L S8 £€L g9 Lot S 69 4 LE S0 S
hd gee hd 961 nv hot h8 ctlL h9 00L th 89 174 9¢ 0 h
€3 L2z €0 g6l €y €91 3] LEL €9 66 o L9 €2 s €0 €
23 922 2l w6l cv - 29l cg 0tl 29 86 2h 99 22 we 20 "
3 Gee (3¢} €61 LV 191 18 62l 19 L6 Ly G9 L2 £e L0 L
0d hee 02 261 ov 09t 08 g2l 09 96 Oh h9 (074 2t 00 0
XaH 03q X3H 209q X34 BN X3H 29(q X3 23Q XaH 03q X9H 09Q X3H Bl

S8NTeA 334Qq BUO TTB JOJ TBWTO3(Q 03 X3 WOJJ UOTSIDAUCO B ST BUTMOTTOJ Byl

NOISH3ANOD dsvd

IT XIANHddY

PAGE 76

COMMUNICATIONS

PART 5
HUSKY COMMUNICATIONS
5.1 INTRODUCTION
5.2 APPLICATIONS
5.3 COMMUNICATION PORT SOFTWARE
5.4 ASYNCHRONOUS CHARACTER HANDLING
5.5 ASYNCHRONOUS PROTOCOLS
5.6 SYNCHRONOUS PROTOCOLS
5.7 HARDWARE CHARACTERISTICS
5.8 TERMINAL EMULATION

5.9 ERROR MESSAGES

5

5.1

HUSKY COMMUNICATIONS SECTION 5.1

INTRODUCTION

Introduction
A principle feature of HUSKY's architecture is its powerful and
flexible communications facility.

HUSKY can communicate freely with most other types of computer,
from micros to mainframes, using a variety of easily selected
communication 'Protocols'. These protocols, of both synchronous
and asynchronous varieties, are chosen for compatibility with
other systems and are not special to HUSKY.

To establish communications, HUSKY uses a subset of the
universally-accepted RS232/V24 communications interface. This
interface, used in virtually every computer system, terminal,
printer and modem, allows HUSKY to 'plug in' to other systems
without modification.

HUSKY is equipped to act as a 'Data Terminal Equipment' (DTE),
and together with appropriate protocol selections can resemble
(partially emulate) many popular computer terminals. In this
mode, it can be used as a portable computer terminal, accessing
and communicating with other systems.

Alternatively, HUSKY can act as a self-contained computer,
directly supporting peripherals like printers without additional
equipment. Remember that in this mode, HUSKY may need a
'crossed cable' or 'modem simulator' to communicate with other
terminal-equipped devices.

HUSKIES can communicate with each other, either side-by-side on

the bench or over thousands of miles by telecommunication
channels.

REV.HC.060CT PAGE 5-1

5.2

APPLICATIONS

HUSKY's communications can be used for transferring both
programs and data to other systems.

Programs can be loaded into HUSKY daily, or as required, from a
central database. Secure protocols and program-based error
checks can guarantee accurate copies.

New, revised or corrected programs can be returned to the
database for storage. Database files and command functions can
be accessed automatically, or under manual control using HUSKY's
terminal emulation.

Data can be collected and down-loaded to mainframe, minicomputer
or microprocessor storage whenever required.

Data transmissions can be formatted exactly to resemble existing
data terminal configurations, allowing HUSKY to slot directly
into existing software support structures.

Database information (for instance, tables of names and
addresses) can be sent to HUSKY for presentation to operatives
in the field. Collected data can be linked to previously loaded
database information for instant verificiation and validation.

REV.HC. 060CT ' PAGE 5-2

5.3

5.3.1

5.3.2

5.3.3

HUSKY COMMUNICATIONS SECTION 5.3

COMMUNICATION PORT SOFTWARE

HUSKY's communications format is software controlled.

If HUSKY fails to communicate, always check the port
initialisation for the correct format.

Initialising the Port
To initialise, or alter, HUSKY's communications procedure,
follow these steps:

From Main Menu or application program (see Section 4.2.3.18)
select 'Initialise communications'.

You are now in the communications program. All entries are
menu-type choices, selected by the 'scroll' keys and confirmed
by 'enter’.

Values previously selected are displayed as the initial menu
option presented. For instance, if '1200 baud' had previously
been selected, then this option will appear after the heading
'Rate’.

HUSKY will prompt first for 'transmission parameters', followed
by 'Receiving Parameters’.

Specific parameters are modified by positioning the cursor with

the ___ ___ keys, and selecting the desired option with the | |
keys.

REV.HC. 060CT PAGE 5-3

HUSKY COMMUNICATIONS SECTION 5.3

The transmission parameter screen looks like this:

FIG.5.1

Transmission Parameters
Rate-1800 Prtcl-none Pty-none

CTS-n DTR-n LF-n Echo-y Null-0

press ENTER if acceptable

The receiving parameter screen looks like this:

FIG 5.2

Receiving Parameters
Rate-1200 Prtcl-none Pty-none

RTS-of f DSR-n DCD-n Serig-off

press ENTER if acceptable

To re-select the previous entries, just press 'ENTER'.

REV.HC. 060CT PAGE 5-4

HUSKY COMMUNICATIONS SECTION 5.3

5.3.4 Baud Rate

Transmission and reception baud rates may be independently set.
It should be remembered that if any software handshaking is used
then both transmission and reception should be at the same
speed, as most systems operate in this way. (If the remote
system has different transmission and reception rates then HUSKY
should be set up appropriately).

The available baud rates are:

50, 75, 110, 150, 300, 600, 1200

5.3.5 Select Protocol
Protocols available (not necessarily on every machine) include
the following:

NONE
XON/OFF
ACK/NAK
ETX/ACK

5.3.6 Select Parity (PTY)
On transmission parity is implemented as follows:

a) None -bit 8 is reset i.e. logical O

b) odd -bit 8 is set or reset to cause an
odd number of logical 1l's in the
data bits.

c) Even -bit 8 is set or reset to cause an
even number of logical 1l's in the
data bits.

On reception the implementation is:

a) None -parity bit ignored.

b) 0dd or Even —the data is checked for an odd or
even number of logical 1l's. If
the check fails then the character
is received as OFFH which is
displayed as

Whichever parity selection is made the data always has bit 7 = 0
to the calling program.

REV.HC.060CT PAGE 5-5

5.3.7

5.3.8

5.3.9

5.3.10

HUSKY COMMUNICATIONS s . SECTION 5.3

Select Handshaking
This function determines the function of the CTS and RTS signals
in the RS-232 interface during communications.

a) 1In Receive Mode: CTS active (y).
If selected, HUSKY will assert CTS when it is ready to
receive data. (CTS=1 when ready for data, CTS=0 when
not). If not selected (n), is always '1'.

b) In Transmit Mode: RTS active.
If selected, HUSKY will only transmit when the RTS
signal from the peripheral is active. (RTS=1 when OK
to transmit, RTS=0 when not). If not selected, HUSKY
will ignore the RTS line.

NOTE: See Section 5.7.2 'Interface connections’'.

Line Feed Enable (Transmit mode only)

To make transmission to devices such as printers and VDU's it is
convenient to have control of whether or not Line Feeds (10
Decimal or Control J) are sent following carriage return (CR)
(13 Decimal or Control M).

If a CR (13 Decimal or Control M) is sent, and if the LF option
is selected, an LF is sent out following the CR. If LF is not
selected only the CR is sent.

NOTE: in firmware revisions issued before January 1983, LF
characters are always suppressed if LF is not selected, even if
sent in the form:

LOPCHR 10.

It is necessary to POKE 17815 (LEAF), 1=LF active, O=not. See
section 4.1.4.

This problem is eliminated in current revisions.

Null Select (Transmit mode only)

To help devices which do not support handshaking, e.g. some
printers, the NULL option allows a delay at the end of lines by
transmitting a number of NULLs. The NULLs are sent after the CR
of CR,LF. HUSKY permits 0,2,5,10 or 20 NULLs to be sent at the
end of lines.

Transmission Echo

By selecting this option any characters which are being trans-—
mitted will also be displayed on the HUSKY screen. This is a
very useful method of checklng that transmission is actually
taking place. The function is equivalent to full/half duplex
selection.

REV.HC. 060CT PAGE 56

5.3.11

HUSKY COMMUNICATIONS a SECTION 5.3

Select Serial Ignore Character (Receive Mode only)

Some devices which communicate with HUSKY may transmit
characters which the HUSKY does not require. This option SERIG
is selected to inform the HUSKY to ignore such characters. The
decimal value of the character to be ignored is selected by
using the | and | keys to increase or decrease the number
displayed next to SERIG and then pressing Enter. See Part 3,
Fig. 3.8.2 for ASCII-decimal equivalent.

If the HUSKY is required to ignore the character 'DEL' (delete)
then 127 should be selected.

NOTE: It is important that 'off' should be selected in this
option if not required.

REV.HC. 060CT PAGE 5-7

5.4
5.4.1

5.4.2

5.4.3

5.4.3.1

HUSKY COMMUNICATIONS . SECTION 5.4

ASYNCHRONOUS CHARACTER HANDLING

Introduction

HOSKY's asynchronous serial data communications are handled by a
communications software package totally separate to the user's
program or the Basic interpreter.

The user needs no detailed knowledge of data communication to be
able to utilise HUSKY's powerful facilities: The required con-
figuration is selected from 'menus' and operation of the package
is virtually invisible.

Buffers

Characters are transferred to and from the serial interface via
invisible 'buffers' that effectively disconnect the application
program from the outside world. These buffers ensure a smooth
flow of data and correct reaction to protocol responses even
when HUSKY is busy doing something quite different!

Because the communication package is interrupt driven, the
execution of user programs is not affected by communication.
However, the user program may slow down if the serial line is
busy. HUSKY's communication buffers are available whenever the
machine is powered up, even if the application program is not
requesting communication. Incoming messages will be received
and held in the buffer, while any outgoing data remaining will
continue to be sent down the line. Any protocols selected will
continue to be observed. . ’

Communicating with Basic
HUSKY's Basic interpreter transmits and receives characters via
the serial interface either singly or in blocks.

Individual characters can be transmitted by statements like
LOPCHR and received by LINCHR. Whole words, variables, strings
or lines can be handled by LPRINT and LINPUT. See Part 3,
'HOSKY's Basic Programming', for details.

Irrespective of the content of the user program, all data rates,
protocols and other selections previously made will be observed
invisibly by HUSKY's communication software package.

When transmitting characters, HUSKY Basic will pause while each
character or block is sent. If the transmission echo is
selected, each character will appear on the screen as it is
transmitted. HUSKY Basic will not move forward to the next
program line until the character or block is complete. If an
error checking protocol is selected, HUSKY will wait until
confirmation of reception ('ACK') is received. If a
'communication failure' is detected, execution of the user
program will be suspended until manually overriden.

REV.HC. 060CT PAGE 5-8

5.4.3.2

HUSKY COMMUNICATIONS SECTION 5.4

When receiving characters, LINCHR or LINPUT statements will
fetch any characters or blocks currently held in the reception
buffer.

NOTE: This data may have been received prior to execution of the
LINCHR or LINPUT program line.

If data is already in the buffer, Basic will return immediately
with the message. If no data is present, Basic will wait for
incoming data, and will return when characters or blocks are
available.

Reception of data is completely transparent to the user Basic
program being run by the HUSKY. Data may be sent at any time to
the HUSKY, communications protocols being implemented as
selected.

Use is made of a 132 character input buffer. Received
characters are placed into the buffer in a 'barrel' fashion. If
more characters are received than this, without any being read
by a calling program then the earliest characters are
overwritten. This is true even if RTS or XON/XOFF handshaking
is used and is ignored by the sending device.

The effect of this buffering is to permit reception of
characters to carry on steadily through calling programs which
process the characters intermittently. This can give a greater
overall throughput.

The buffer is needed by definition for the XON/XOFF and ETX/ACK
protocols.

REV. HC. 060CT PAGE 5-9

5.5

5.5.1.1

5.5.1.2

5.5.2.1

5.5.2.2

ASYNCHRONOUS PROTOCOLS

NOTE: In this section, 'host' means the device communicating
with HUSKY, whether it be computer, printer, modem or otherwise.

These protocols may be used by Basic application programs, user
assembly code or directly in 'VDU simulation' mode.

None .

RECEPTION

As implied, this selection does nothing to control the incoming
data. It behaves as a simple teletype. Characters are placed
into the reception buffer and a calling program may read them
out asynchronously.

None

TRANSMISSION

Each character is transmitted as:the calling program requests it
(except when waiting for the previous character to be sent).
There is no buffering of the output data.

XON/XOFF (DCL/DC3)

RECEPTION

If an incoming character causes the receive buffer to have 90 or
more unread characters then an XOFF character (DC3,19 Decimal or
Control S) is transmitted, which should prevent the host sending
further characters to HUSKY. When the buffer is reduced to 10
pending characters, an XON (17 Decimal or Control Q, DCl) is
transmitted to re-enable the host to HUSKY transmission.

Subsequent XONs or XOFFs are never transmitted without an inter--
vening XOFF or XON respectively.

XON/XOFF (DCL/DC3)

TRANSMISSION .

The input data line is also examined for XON or XOFF characters.
If an XOFF or stream of XOFFs are received then transmission is
stopped as soon as the character being transmitted is finished.
The protocol requires an XON to restart transmission. This
protocol procedure strips 'XON' or 'XOFF' Control characters,
thus passing only valid data to Basic.

REV.HC. 060CT PAGE 5-10

5.5.2.3

5.5.3.1

5.5.3.2

5.5.4.1

SLAVE, HUSKY TO HOST TRANSMISSION

TRANSMISSION

It should be noted that following the host transmitting an XOFF,
it is possible, depending on data link speed, to have a further
two characters sent out by HUSKY. This is due to the time taken
to receive the XOFF and the possibility of just missing the
start of the next character.

At the start of transmission a received XON is assumed, to avoid
lock-up.

ETX/ACK

RECEPTION

In this protocol the HUSKY will send an ACK character (06
Decimal or Control F) after reception of an ETX character
terminating a line that has been ready by BASIC. The ETX is
stripped from incoming data and not sent to Basic. This
protocol causes the host device to wait at the end of each block
of data, which should not exceed 130 characters, for an
acknowledgement that the block has been read. The ETX/ACK
acknowledgement is only transmitted when the block has been
fetched from the buffer by BASIC.

ETX/ACK

TRANSMISSION

This protocol will send out an ETX (03 Decimal or Control C)
character after any transmitted carriage return. Transmission
is then halted until an ACK (06 Decimal or Control F) is
received from the host. This enables individual data blocks to
be sent and an acknowledgement awaited. If transmission is to
another HUSKY the blocks should not exceed 130 characters or the
input buffer may be exceeded. If an ACK is not received within
three seconds then communication failure is assumed and an error
message is put up on the screen.

The ACKs are not sent to BASIC.

ACK/NAK

RECEPTION

In this mode the HUSKY will receive a complete block of data,
terminated with a carriage return. It will then check for
parity errors. If one exists then a NAK (21 Decimal or Control
U) is sent out to the host and the data block ignored.

REV.HC. 060CT PAGE 5-11

5.5.4.2

HUSKY COMMUNICATIONS SECTION 5.5

If the block is error-free then the received block is sent
character by character to BASIC. When the carriage return is
sent to BASIC an ACK (06 Decimal or Control F) is sent out to
the host to indicate successful data block reception.

If HUOSKY is waiting to send a character and an XOFF has held up
transmission, then if an XON is not received within 30 seconds,
a communication failure is assumed and an error message is put
on the screen.

ACK/NAK

TRANSMISSION

Data blocks are first placed into a transmission buffer. Upon
receipt of a carriage return from BASIC, the entire buffer is
transmitted. HUSKY then awaits an acknowledgement. If an ACK is
received then the next data block is assembled into the buffer
and sent. If a NAK (21 Decimal or Control U) is received then a
failure is indicated and the entire buffer is sent again. If

~ nothing is received after three seconds a NAK is assumed and the

buffer sent again. The NAKs may be sent a maximum of three
times. If an ACK is still not received then the communications
failure message is put on the screen.

REV.HC. 060CT PAGE 5-12

5.5.5
5.5.5.1

HUSKY COMMUNICATIONS SECTION 5.5

Systime

HUSKY to Systime communications Protocol Specification

This protocol is provided to facilitate communication between
HUSKY and Systime model S500 minicomputers. The protocol
embodies a checksum in addition to parity checks.

Data is sent in the form of messages which are subdivided into
one or more fixed length blocks. Each block is individually
checked and acknowledged before any further blocks are sent.

DATA BLOCKS
Each block consists of:-

1 start character
64 data characters
3 checksum

1 stop character

The purpose of each character group is as follows:—

Start Character
The first block of a message uses SOH (01 Decimal).
Further blocks use STX (02H) as the start character.

Stop Character
The last block of a message uses EOT (04 Decimal), previous
blocks use ETX (03H) as the stop character.

Data Character

The data characters may consist of any 7 bit pattern with the
exception of the handshake characters : ACK (06 Decimal), NAK
(15H) and WACK (13H).

CheckSum

The checksum is formed as the modulo 256 addition of all data
characters, with parity reset. The number formed is transmitted
in ASCII as three decimal digits. Leading zeros are not
suppressed. The most significant digit is sent first.

Insufficient Data Characters

If there are less than 64 characters for the data block, then
the remainder of the block is filled with NULLS (00 Decimal).
The characters are ignored on reception.

REV.HC. 060CT PAGE 5-13

5.5.6

BUSKY COMMONICATIONS SECTION 5.5

Handshaking

Each block of data must be acknowledged by the receiving device.
After a successful reception and if the receiver is ready to
receive another block, then it returns an ACK (06 Decimal). If
the transfer is deemed unsuccessful for any of the following
reasons:—

i) parity fault on any character

ii) Incorrect start or end characters

iii) wrong number of characters

iv) checksum error

V) timeout (waiting for characters for 4 secs)

then a failure is returned as a NMAK (21 Decimal).

If the receiver accepts the block, but is not ready for further
data, then a wait acknowledge WACK (19 Decimal) character
delaying the transmitter's time out is transmitted. Further
delays can be accumulated by transmitting WACK's at the rate of
one every 2 secs. The message is finally accepted with an ACK.

Communications Failure

If a failure occurs on transmission and a timeout activates,
then HUSKY will display 'Communications Failure' on the top line
of the display. This message may be overriden by pressing 'X'
on the keyboard. This will force transmission for ETX/ACK or
XON/XOFF; in the case of ACK/NAK then the buffer will be sent
another three times.

RIA7_AC NANCT PACE 5-14

5.6

5.6.1

HUSKY COMMUNICATIONS SECTION 5.6

SYNCHRONOUS PROTOCOLS

To provide the fast high integrity communication required by
most mainframe computers, Husky has a synchronous data
communication capability.

Communication takes place using synchronous transmission of data
blocks. These blocks are checked using check characters and
acknowledged as appropriate using particular protocols.

Currently available as a factory option is the IBM2780%
communication protocol carried over the bisync synchronous
communication carrier. Other protocols are in development.

IBM 2780 ON THE HUSKY

BACKGROUND

The IBM 2780 is a very popular data transmission terminal used
for remote job entry. The transmission protocol developed for
this device has been widely implemented on other mainframes to
the extent of becoming a de facto industry standard. Husky's
implementation mimics 2780 protocol to provide well proven, fast
and extremely reliable data transfers.

IBM 2780 is used for batch entry by use of "job cards".

The Husky is easily programmed to simulate the use of job cards
providing all the processing facilities normally available on a
remote terminal.

HUSKY is the first portable to offer a comprehensive
implementation of IBM 2780 in true synchronous mode.

ADVANTAGES

This well proven and sophisticated protocol gives Husky
reliable, high speed communications over relatively poor data
links such as the public switched telephone network at speeds as
high as 2400 baud.

Using a widely used standard provides access to a wide range of
mainframe computer systems, directly and without need for
supporting equipment. Data files can be exchanged between Husky
and mainframe with great flexibility, convenience and
dependability.

#NOTE: IBM and 2780 are registered trademarks of IBM Corp.

Husky is the first portable to offer a comprehensive implement-—
ation of IBM 2780 in true synchronous mode.

REV.HC. C60CT PAGE 5-15

5.6.2

5.6.2.1

HUSKY COMMUNICATIONS SECTION 5.6

TECHNICAL IMPLEMENTATION

:Synchronous transmission using BiSync
:Character set - EBCDIC
sFull CRC generation, error handling and flow control
:Modem handshake lines available
:Internal or external clocking options
:May be used over the public switched telephone network or
private lines
:Records terminated using the EM character, providing optlmum
throughput
:The "wait acknowledge" is fully implemented
:Protocol use is completely transparent to user programs
:Data Rates — up to 2400 Hz with external clocking
- up to 1200 Hz using internal clocking

The internal self-synchronising feature enables Husky to Husky
communications over standard 300 baud asynchronous modems.

Synchronous communication

Synchronous communication transfers data as a continuous stream
of data characters, without the need for start and stop bits as
used in asynchronous communication. This

maximises the data transfer rate for a given channel bandwidth.
For the receiver to be able to use the data two levels of
synchronisation need to take place:

«i) Bit synchronisation
This allows the receiver to save the state of each bit
correctly, preferably sampled at the centre of each
bit.

ii) Character Synchronisation
Each block of eight bits which represent a character
needs to be identified from within the data stream.

Bit Synchronisation

Two techniques are used by HUSKY to achieve bit synchrom.satlon.
External cloclung allows both transmit and receive to be
synchronised using two independent clocking signals. These
signals are generated by either a modem or modem eliminator. The
selection 'CLK' on the speed selection of transmit or receive
menus selects this mode.

Two pins are prov1ded for the clock signals. Pin 15 provides the
transmit clock and pin 17 the receive clock.

On transmit, a rising edge (-12V to +12V) causes a bit to change
on the transmit output (pin 2).

DIR7 I NENrwn —— e e

5.6.2.2

BUSKY COMMUNICATIONS ' SECTION 5.6

On receive, a falling edge (+12V to -12V) causes the state of
the receive input (Pin 3) to be sampled.

It is important that maximum clock speed on Husky should not
exceed 2400Hz (giving a data rate of 2400 baud). The minimum
speed is approx 100Hz.

Exceeding this clock rate may cause unpredictable results.
Alternatively, the Husky can self clock. This is achieved by
selecting from the menu the desired transmit and receive baud
rates in the range 50-1200 baud, as for asynchronous. On trans-
mit, the data is sent out by using internal timing, with no
reference to any external clock source.

To receive incoming data the Husky times from rising edges (-12v
to +12V) on the receive data line to give the internal clocking.

Self clocking is useful for HUSKY — HUSKY communications. It may
be used over asynchronous modems to provide both increased
throughput and data integrity.

Character Synchronisation

To be able to extract eight bit data characters, the HUSKY has
to synchronise itself to the incoming characters correctly.
This is done by detecting special synchronising characters
called SYN characters (32H). The HUSKY considers synchro-
nisation to have been achieved after receiving two contiguous
SYN characters.

After receiving the two synchronising characters each group of
eight received bits are then considered to be a character.

Synchronisation is considered to have been lost if a line turn-
around character is received (OFFH). This is equivalent to an
open line.

Prior to sending the synchronising characters, the HUSKY trans-
mits an OAAH pad character which is to assist in bit synchro-
nisation.

Every data block whether it consists of one or 500 characters,

must start with a pad character, and two SYN characters and
terminate with line turnaround.

REV.HC.060CT PAGE 5-17

5.6.3

5.6.3.1

5.6.3.2

5.6.3.3

HUSKY COMMUNICATIONS SECTION 5.6

Binary Synchronous Communications (BSC)

The information carrier for 2780 is the binary synchronous
communications (BSC) procedure. The character set used is
EBCDIC (Extended Binary Coded Decimal Interchange Code). The
following is a description of the subset of BSC used for HUSKY
2780 emulation.

‘NOTE: HUSKY generally operates using the USASCII (United States

of America Standard Code for Information Interchange).
Characters either transmitted or received by BASIC will be in
ASCII, so CHRS$, LOPCHR etc., instructions all generate ASCII
characters. To use EBCDIC the 2780 driver software utilises an
ASCII to EBCDIC and EBCDIC to ASCII code converter. The con—
versions used are in table 5.6.1 at the end of this section.

The code used on the transmission channel is transparent to
BASIC programs, and need not concern the programmer.

Text Blocking

BSC defines general structural procedures for the blocking of
information. Several control characters are used for the
control of message blocks.

A message consists of one or more blocks of text data. The
start of text character (STX) is used immediately preceeding
each block of data. Each data block but the last is terminated
by an end of transmission block (ETB) character or an inter-
mediate text block (ITB) character. The last data block ends
with an end of text (ETX) character.

Error Checking
Each block of data is error checked by the receiver by a cyclic

redundancy check (CRC). After each transmission the receiver
normally replies with ACKO or ACKl - data accepted continue
sending; or with NAK - data not accepted (e.g. due to a data
transmission error), retransmit the previous block.

CRC-16)
Husky uses the accepted error checking method of EBCDIC 2780.
The cyclic redundancy check is a division at both the trans-
mitting and receiving stations using the numeric value of the
message as a dividend, divided by a constant. The quotient is
discarded and the remainder is used as the check character. This
is transmitted immediately following an ITB, ETB or ETX. The
receiver checks this value and finds no error if they are equal.

CRC-16 uses the plynominal (x16+x15+x2+1) as the divisor
constant. The 16 bit remainder is sent as two eight bit
characters. This is also .sometimes referred to as the BCC
(Block Check Character). :

REV.HC.060CT PAGE 5-18

5.6.3.4

5.6.4

5.6.4.1

5.6.4.2

5.6.4.3

5.6.4.4

5.6.4.5

5.6.4.6

5.6.4.7

Line Bid

For either the HUSKY or base computer to seize the line for
transmitting a message, the line must first be seized. This
requires sending an enquiry (ENQ) character. A positive
acknowledgement permits the start of a message.

Link Control Characters
The data link is controlled by the use of the following control
characters:

SYN (32H) - Synchronous Idle

This character is used to establish synchronisation. Two
contiguous SYN's are required for synchronisation. They may
also be used as pad characters, although never used as such by
HUSKY. Syncs will be ignored after synchronisation has been
established except as part of CRC.

STX (02H) - Start of Text
This character is used as the start of text preceeding all text
blocks. It is not part of the CRC accumulation.

ETB (26H) — End of Transmission Rlock

The ETB character indicates the end of a block of data
characters. A block check character is sent immediately follow-
ing an ETB. A reply is required after an ETB (ACKO, NAK etc).

ITB (IFH) - End of Intermediate Transmission Block

ITB is also called IUS or US (Unit Separator). This enhances
the throughput due to not having to go through a line turn-
around. The CRC accumulation is reset after an ITB. It is not
necessary to send an STX after the ITB.

If the error check fails then a NAK is sent at the end of the
transmitted message i.e. after the ETB or ETX. The whole of the
message is retransmitted in the event of a MAK being the reply
to a complete message block.

ETX (03H) — End of Text

ETX is transmitted after a block of characters started by an
STX. The CRC is sent immediately after an ETX. A reply is
required to indicate the receiver status.

EOT (37H) — End of Transmission

This character terminates a message transmission containing a
number of blocks. It is also used to indicate a system
malfunction. See section 5.6.8.

END (2DH) - Enquiry

ENQ is used as the line bid to start a transmission sequence.
ENQ is also used to obtain a repeat transmission of a response,
in the case of a garbled response.

REV.HC. 060CT PAGE 5-19

5.6.4.8

5.6.4.9

5.6.4.10

5.6.4.11

5.6.4.12

5.6.4.13

5.6.4.14

HUSKY COMMUNICATIONS SECTION 5.6

ACKO (10H,70H) — Affirmative Acknowl
This is one of two positive acknowledgements to error checked
message buffers. This informs the transmitting station that the
message was received satisfactorily. This acknowledgement is
also used to confirm a request for the line. ACKO alternates
with the ACKl positive acknowledge.

Alternating Affirmative Acknowledgements

Alternating ACKO and ACKl provides sequential checking of
replies. This ensures that the blocks are replied to correctly.
ACKO is used as the response to a line bid.

It should be noted that ACKO and ACKl consist of two 8 bit
characters.

ACK1 (10H,61H) - Positive Acknowledge
This is the alternate acknowledge. It is used with ACKO to
respond correctly to incoming messages.

WACK (10H,1CH) - Wait Positive Acknowledge

A receiving station that has correctly received a message but is
not yet in a condition to use the data, can send a WACK. It is
a positive acknowledge. The transmitting station should then
respond with an ENQ.

WACK is also a two character sequence. WACKs may be sent
indefinitely at 3 second intervals to stop further transmission.

NAK (15H) — Negative Acknowledge

This character informs the transmitting station that a message
was received in error. It causes retransmission of the
erroneous message.

DLE (10) - Data Link Escape
Data link escape is used to provide various line control
characters. e.g. WACK,ACKO,ACKl, and RVI.

RVI (10H,7CH) - Reverse Interrupt

Reverse interrupt is used as a positive acknowledgement (in
place of ACKO or ACKl). However, it requests termination of the
current message, due to a high priority message needing to be
sent from the receiving station.

Husky will never generate an RVI but will respond to one.
DLE EOT (10H,04H) - Disconnect

This sequence informs the receiver that the transmitter is
shutting down.

REV.HC. 060CT PAGE 5-20

HUSKY COMMUNICATIONS SECTION 5.6

5.6.5 Message Transmission
The following illustrate various message sequences and error
handling.
NOTE:TX=Transmitting station. =Receiving station.

5.6.5.1 Normal Message

ODD EVEN ODD

E S E S E s E E
TX N T (TEXT) T T (TEXT) T T (TEXT) T o]
Q X B X B X B T

RX A A A A

C C C ¢

K K K K

0 1 0 1

5.6.5.2 Unanswered Line Bid (Error 01)

X E (3 secbid E (3 secbid E Number of E
N timeout) N timeout) N retries)
Q Q Q === T

NOTE: The BUSKY will retry for a total of 10 ENQs. Many
mainframe systems never give up.

5.6.5.3 Accepted Retransmissions

ODD ODD EVEN

E S E S E S E B
TX N T (TEXT-A) T T (TEXT-A) T T (TEXT-B) T o]
Q X B X B X B P

RX A N A A

C A C C

K K K K

Y 1 0

REV.HC. 060CT PAGE 5-21

HUSKY COMMUNICATIONS SECTION 5.6

5.6.5.4 Retransmission rejected (Error 04)

oD © o ODD

. E S E S E S . E E
TX N T (TEXT-A) T T (TEXT-A) T T (TEXT-A) T 0]
Q X B X B X B T
RX A N N N
Cc A A A
K K K K
0

NOTE: Number of retrys can vary. HUSKY will retry 10 times,' but
some mainframe systems will retry indefinately.

5.6.5.5 Transmission Delay (receiver initiated)

ODD EVEN ObD

E S E S E E ‘E S
N T (TEXT) T T (TEXT) T N N T
Q X B X B Q Q X etc.

A A W 1 A

Cc C (2 secA (2secA €

K K int) C int) (&l K

0 1 K K 1

\

NOTE: HUSKY does not count WACK-ENQ sequences. The receiver
buffer may be cleared.

REV.HC.060CT ’ PAGE 5-22

HUSKY COMMUNICATIONS SECTION 5.6

5.6.5.6 Transmission delay (transmitter initiated)

E S E T T S E E
X N T (TEXT) T 2 sec T 2 sec T T (TEXT) T (0]
Q X B interval D interval D X X T
RX A A N N A
(o] C A A C
K K K K K
0 1 1

NOTE: HUSKY doés not count TTD/NAK sequences or generate TIDs.
5.6.5.7 STX lost and data ignored.

ODD EVEN EVEN
E S E E E S E E
TX N T (TEXT A) T (TEXT B) T (3 sec N T (TEXT B) T (0]
Q X B B timeout) Q X B T
RX A A No A A
C C response C C
K K K K
0 1 1 0
5.6.5.8 Incorrect positive acknowledgement (error 03)
E S E E E E E E
TX N T (TEXT A) T (TEXT B) T N N N 6}
Q X B B Q Q Q T
RX A A A A A
C C C C €
K K K K K
0 1 0 0 0

NOTE: HUSKY will send 10 ENQs before giving up.

REV. HC. 060CT PAGE 5-23

5.6.5.9

)
0zm

5.6.5.10

5.6.6

5.6.6.1

5.6.6.1.1

HUSKY COMMUNICATIONS ‘ SECTION 5.6

Data link abortion on no response (Error 02)

S E E E E
T (TEXT) T (3 sec response N (3 sec N (o]
X B timeout) Q timeout) Q T
A No No
C response response
K
0
NOTE: HUSKY sends out 10 ENQs
Data link stalemate
E S E
TX N T (TEXT) T No continuation
Q X B
RX A A
€ C
K K
0 1

Note: Failure to receive further messages could be timed
out by the BASIC applications program.

HUSKY/2780 Specific Implementation features

The foregoing describes in general operations on the
communications line for 2780 protocol. The HUSKY has
particular feaures and handling which may be important to users.

Buffer operation

To implement this synchronous protocol it is necessary to use
buffering on transmit and receive so that error checking and
retransmission can be performed.

To enhance throughput there are two buffers each for transmit
and receive, the operation of which is described below.

Transmit buffer

On transmit while one buffer is being filled from the user
program the other is being sent. When the new buffer is full
and the old buffer has been sent then the two buffers effect-
ively swap over and the cycle continues:)

REV.HC. 060CT PAGE 5-24

HUSKY COMMUNICATIONS) SECTION 5.6

Characters —p

Basic Buffer A Communication
Prog Transmitting Channel
Sending Software
Characters I Buffer B '—-'

Characters ——p

Buffer A is filling whilst buffer B transmits.

Characters —p

Basic Buffer A Communication
Prog Transmitting Channel
Sending —l_’——] Software

Characters Buffer B

Characters —p

Buffer B is filling whilst Buffer A transmits.

The maximum buffer length that can be received by a 2780 proto
ool receiver is 512 characters. However, some systems are only
configured for 256 characters. For this reason Husky will only
transmit 200 characters for ease of interfacing.

5.6.6.1.2 Receive Buffer

Buffer A

Comms Receive Basic receive
Channel I/F Prog.
Buffer B

A\ 4

Filling buffer A, emptying buffer B.

\ 4

Buffer A |
Comms Receive | S) Basic receive
Channel

I/F Prog.
Buffer B

Filling buffer B, emptying buffer A.

REV.HC. 060CT PAGE 5-25

5.6.6.2

5.6.6.3

5.6.6.3.1

HUSKY COMMUNICATIONS SECTION 5.6

As with the transmit buffer arrangement, one buffer is being
filled from the communications line while the other is being
emptied by the user program.

As there are 2780 protocol communication with up to 512
character buffers then Husky has receive buffers of 512 bytes.

Data Format

The 2780 batch entry protocol is designed around card formats.
In many cases it is expected that the cards would transmit 80
characters irrespective of whether or not all 80 columns are
used. Each card is considered to be a block of data and is
therefore separated from further cards by an end of block
character (IUS, ETB or ETX) and the following CRC check. If it
is not necessary for a card to have 80 characters, premature
termination can be caused using the EM (end of media) character,
which is then followed by a block termination.

A message block may not split a valid card, so blocks are
variable in size dependent upon the length of the final card.
If fewer than 80 spaces exist in a message buffer at the end of
a card, then the message is sent.

Husky Card Format

Virtually all Husky data is delimited by CR (carriage return).
Blocks of data loaded by LINPUT statements are terminated by CR,
as are lines of printout. The most straightforward method of
block creation is to treat data between CR's as cards of data.

Transmitting Cards

On transmit if a CR is detected in the data then the
communication software will treat it as a block end. The action
taken depends upon the amount of room left in the current buffer
being prepared for transmission. If fewer than 80 characters
remain then the following is prepared:

EM ETB CRC
this is inserted in the data stream in place of the CR. The EM
will inform the receiving station that a card has finished. The
ETB and CRC terminate the message, which is then sent when
previous buffers have been acknowledged.

If there are greater than 80 characters remaining then the
following:)

EM IUS CRC
is inserted into thé current' buffer. Further data can then be

loaded into the buffer prior. to transmission.

REV.HC. 060CT PAGE 5-26

5.6.6.3.2

5.6.6.3.3

If sufficient characters are sent without a CR to fill the
buffer, it is sent with a terminating ETB CRC but no EM
character.

Sending the last Card

To maintain compatibility with existing transmission programs it
is essential they should operate without modification. This
leaves a problem of how to send the final message buffer if it
has not been filled up. If greater than 5 seconds elapses
between characters sent from the RASIC applications program then
the end of a complete transmission sequence is assured and the
current block terminated by ETX CRC. After this bas been
acknowledged the EOT (end of transmission) is sent to close down
the line.

Alternatively, if an ETX is transmitted then this will be inter—
pretted by the 2780 software as the end of transmission, and the
buffer terminated and sent.

Receiving Cards

The computer generating data for transmission to the Husky will
also block data into messages. It need not send EN (end of
media) characters. If any are received by Husky then they are
ignored, since Husky uses variable length records.

To provide BASIC programs with CR delimiters the end of block
sequences:

IUS CRC
ETB CRC
ETX CRC

are all converted to CR (carriage return) when returned to the
Basic applications program.

This does mean that Huskies will communicate properly to each
other when connected hack to back.

2780 receiving stations use ESC sequences for speciel functions
like skipping line. These sequences are ESC n where n can be a
nunber of prirtable characters. To avoid confusion when these
are received the Husky will ignore received ESC's and their
associated following character.

REV.HC. 060CT PAGE 5-27

5.6.6.4

5.6.7

5.6.8

HUSKY COMMUNICATIONS SECTION 5.6

Character Restrictions

Husky has not implemented any of the transparency features of
BSC. It is, therefore, not possible to send any of the follow-
ing characters:

STX - 02H (ASCII)

ETX - 03H (")
ETB-17H (")
EDT - 04H (")
SYN-16H (")
NAK - 15H (")
DLE - 10H (")

Us -1FH (")
ESC-1BH (")

If any of these characters are sent then they may either be lost
or cause disruption to the transmission channel.

Maximum block length of 80 characters is specified. If more
characters before a carriage return are sent then it is possible
that they will cross a buffer boundary, causing a spurious end
of block. This would give a receiving Husky a spurious CR.

Use in VDU Simulation

Although 2780 work stations are not generally interactive
devices it is possible to use the Husky in this mode when, for
example, testing the system with LOG ON cards, etc.

When in VDU simulation any received data is displayed on the
screen.

To transmit, a message character may be typed in directly.
Provided no mistakes are made, and there is less than 5 secs
between each character, the message is sent on the transmission
channel.

Communications Errors

There are a number of different line errors which may occur when
using this protocol. These are detected and then displayed as
communications errors. An error number is also displayed. The
meaning of these error numbers is shown in section 5.6.5
(Message transmission). If use of the ON COMMS verb is made
(see section 3.3.2.32) then the error number will be in the
COMERR flag.

There is one exception to this rule, the unanswered line bid as
shown in (5.6.5.2). This is the most usual error and will
generally be due to a connection fault, as no characters have
been received. The option is then given to: Retry.transmission
?2(Y/N) if 'Y' is pressed then the Husky will send out up to 10

REV.HC. 060CT PAGE 5-28

5.6.8.1

5.6.8.2

5.6.8.3

5.6.8.4

5.6.8.5

5.6.9

HUSKY COMMUNICATIONS SECTION 5.6

more ENQs (enquiries) and the offer of retry made again. If 'N'
is pressed then the error 01 is returned, and if programmed
through ON COMMS, returns control back to BASIC.

ERROR MESSAGES:

Error 0l: Unanswered line bid

This is due to not receiving any reply in a request for the
line, usually caused by incorrect connection of the
communications channel.

Error 02: No response from receiver
After establishing the line, a buffer has been sent to which no
response has been given, despite 10 ENQ's having been sent.

Error 03: Response not matched by odd-even block count
The wrong positive acknowledgement has been given to a buffer,
despite confirmation requests.

Error 04: Retransmission regected
Repeated transmission of a buffer gets only the NAK response,
has tried 10 times.

Error 05: No ENQ after WACK
Having sent out a WACK no acknowledging ENQ has been received
for 5 secs.

Hardware Handshaking

This protocol is generally used with modems or modem simulators.
The use of RTS (Request to send) and CTS (Clear to send) is
therefore specified by the modem, particularly if half duplex or
two wire operation is desired (as on the public switched tele—
phone network). Both RTS and CTS may be deactivated as usual.

If they are used, then the following takes place:

i) If the Husky is not transmitting then RTS is inactive,
allowing the remote modem to transmit.

ii) When starting a transmission buffer the RTS is
activated. Before transmission starts CTS is awaited
from the modem. When CTS becomes active Husky starts
transmission.

iii) puring transmission RTS is kept active, but CTS is not
checked as if it became inactive the transmission
would be broken and synchronism dropped.

iv) At the end of a transmission RTS is de-activated and
the Husky awaits reception.

There are no timeouts on the handshakes.

REV.HC.060CT PAGE 5-29

HUSKY COMMUNICATIONS SECTION 5.6

5.6.10 Hardware/configuration

The usual data link configuration for a Husky to mainframe is:

TXCLK TXCLK
RXCLK | MODEM A TRANSMISSION MODEM B RXCLK
TX DATA TX DATA

RX DATA RX DATA
RTS CHANNEL RTS
CTS 2/4 WIRE CTs

The transmission channel could be the switched public network,
4-wire private lines etc.

The two modems and the channel could be a modem eliminator for
nearby operation.

As can be seen the modems generally create all the clocking in
this simple arrangement. The Husky will not generate any actual
clocking of its own, except when self synchronising to the data.

The handshake signals RTS and CTS ensure proper data flow over a
half duplex line (allowing the modems to settle etc). Then may
not be necessary over 4-wire links.

Other signals may be sourced by the modems (e.g. DTR etc.) but
these are not currently used by the Husky.

5.6.11 Husky to Husky connection
To operate this protocol 'back-to-back' between two Huskies, it
is only necessary to use a crossed 3-wire lead (TX,RX and
ground). If the handshake lines are connected, then CTS must be
deselected on the menu as the handshaking is only configured for
modem operation.

The Huskies need to be set for self clocking at the designed

speed, typically 1200 baud or 300 baud over slow speed async
modems.

REV.HC.060CT PAGE 5-30

(all values are in Hex)

HUSKY COMMUNICATIONS

TABLE 5.6.1

SECTION 5.6

ASCII TO EBCDIC CONVERSION

When using EBCDIC communications HUNTER provides ASCII to EBCDIC

conversion as follows:

ASCII CHAR EBCDIC ASCII CHAR EBCDIC
00 NULL 00 20 SPACE 40
01 SOH 01 21 ! 54
02 STX 02 22 " TF
03 ETX 03 23 HEX 7B
04 EOT 37 24 $ 5B
05 ENQ 2D > % 6C
06 ACK 2E 26 & 50
07 BEL 2F 27 ' 7D
08 BS 16 28 ()
09 HT 05 29) 5D
0A LF > 2 * 5¢C
0B VT 0B 2B + L4E
oc FF oc 2C , 6B
oD CR oD 2D - 60
OE S0 OE 2E . 4B
OF SI OF oF / 61
10 DLE 10 30 0 FO
11 DC1 11 31 1 F1
12 DC2 12 © 32 2 F2
13 DC3 13 33 3 F3
14 DCl 14 3 4 Fl
15 NAK 3D 35 5 5
16 SYN 32 36 6 F6
17 ETB 2 37 7 F7
18 CAN 18 38 8 F8
19 EM 19 39 9 F9
1A SUB 3F 34 : 7A
1B ESC 27 3B ; 5E
1c FS 22 3C < I
1D GS 1D 3D = 7E
1E RS 1E 3E > 6E
1F Us 1F 3F ? 6F

REV.HC. 060CT PAGE 5-31

HUSKY COMMUNICATIONS

SECTION 5.6

ASCII CHAR EBCDIC ASCII CHAR EBCDIC
40 e 7C 60 \ 79
u1 A 1 61 a 81
42 B c2 62 b 82
43 c c3 63 c 83
i D c4 6U d 8y
45 E 5 65 e 85
46 F c6 66 f 86
47 G C7 67 g 87
48 H c8 . 68 h 88
49 I c9 69 i 89
4A J D1 6A j 91
4B K D2 6B Kk 92
4c L D3 6C 1 93
4D M DU 6D m 94
LE N D5 6E n 95
4F 0 D6 6F [¢] 96
50 P D7 70 - p 97
51 Q D8 (4l q 98
52 R D9 72 r 99
53 S E2 73 s A2
54 T . E3 T4 t A3
55 U E4 75 u AY
56 v E5 76 v 5
57 W E6 77 w A6
58 X ET 78 X AT
59 Y E8 - 79 y A8
5A z E9 TA z A9
5B [00 7B { co
5C EO 7C 6A
5D] 00 7D } DO
5E ~ 5F TE A
5F _ 6D TF DEL o7

REV.HC.060CT PAGE 5-32

5.7
5.7.1

5.7.2

HUSKY COMMUNICATIONS SECTION 5.7

HARDWARE CHARACTERISTICS

Data Format

The format is of 8 bits of data, seven of which are used to
define the ASCII character, the eighth bit being parity, if in
use. There is one start bit and one or two stop bits:

FIG.5.3
1 2 3 4 5 6 7 .8
START 7 DATA BITS PARITY BIT STOP BIT
BIT .

The number of stop bits is irrelevant on reception. On trans-
mission there are two stop bits for 110 bauds and one stop bit
otherwise.

Interface Connections

EIA Interface

HUSKY operates on full duplex, asynchronous communication lines
via a 25-pin connector which is compatible with the requirements
of EIA specification RS-232-C. Table 1 summarises the EIA
connector signals; the following paragraphs explain each signal
as used in HUSKY.

FIG.5.4

I 2 3 4 -] 6 7 8 9 10 " 12 13
Qo 9 Q Q] 9o Q Q o Q Q Q o
Q Qo Q 9 Qo o Q Q Q Q o Q
4 15 16 7 18 i9 20 21 22 23 24 25

MALE (HUSKY)

REV.HC.060CT PAGE 5-33

HUSKY COMMUNICATIONS SECTION 5.7

TABLE 1

EIA RS-232-C
Connector Signals

HUSKY is configured as a data terminal equipment (DTE)

Pin . Description Pin Description
Number Number
1 Protective Ground 14 (not used)
2 Transmitted data 15 (not used)
3 Received data 16 (not used)
4 Request to send 17 (not used)
5 Clear to send 18 (not used)
6 (not used) 19 (not used)
7 Signal ground (common
return) 20 (not used)
8 (not used)) 21 (not used)
9 (not used) ‘ 22 (not used)
10 (not used) 23 (not used)
1l (not used) 24 (not used)
12 (not used) 25 (not used)
13 (not used)

Protective Ground — Pin 1
This conductor is electrically bonded to the HUSKY chassis.
This signal is identical to pin 7 (signal ground).

Transmitted Data (from HUSKY) — Pin 2

HUSKY transmits serially encloded characters and break signals
on this circuit, which is held in the mark state when neither
characters nor break signals are being transmitted.

Received Data (to HUSKY) — Pin 3

HUSKY receives serially encoded characters generated by the
user's equipment on this circuit.

Request to Send (from HUSKY) — Pin 4

Clear to Send (to HUSKY) — Pin 5

Signal Ground - Pin 7

This conductor establishes the common ground reference potential

for all voltages on the interface. It is permanently connected
to the HUSKY chassis. i :

REV.HC.060CT PAGE 5-34

HUSKY COMMUNICATIONS SECTION 5.7

Boled Electrical Characteristics
HUSKY Output Voltages - On signals designated "from HUSKY", -
25.0V to +1.5V or an open circuit is interpreted as a mark or
unasserted state, and +25.0V to +3.5V is interpreted as a space
or asserted state. Voltages greater in magnitude than +25V are
not allowed. These levels are compatible with EIA STD RS-232-C
and CCITT Recommendation V24,/V28,

5.7.4 Hardware Handshaking
There are two handshake lines provided. CTS is used to control
transmission, and RTS is used to request transmission of data.

5.7.4.1 CTs
Clear to send is an incoming control signal used to enable or
disable HUSKY transmission.

CIS, if enabled, is tested at the beginning of each transmitted
character. If it is at logical 0 (+12V or open circuit) then
the character is sent. If at logical 1 (-12V) then the character
is held until CTS is enabled. A transmitted character, once
started, is always completed, unless the HUSKY is switched off.

5.7.4.2 RTS
Request to Send is an outbound control signal from HUSKY to the
connected Data Communications Equipment requesting permission to
transmit data. .

When a calling program requires to initiate the transmit
function, RTS is set high to a logical 0(+Ve). CTS is then
expected to be returned high at logical 0(+Ve) to HUSKY from the
DCE interface as a delayed function of RTS, thus permitting
transmission to proceed.

Immediately the stop bit of the last character from the program
buffer is transmitted, RTS is set low to logical 1(-Ve),
initiating a return from the DCE of CTS at a low logical 1(-Ve)
state.

This is interrogated by the communication driver program and
further transmission disabled.

Subsequent data transmission is enabled, i.e. the next block of
data, by repeating the RTS/CTS sequence.

5.7.5 Interface Power Control
Under normal circumstances the serial output interface is
powered down to conserve battery life. The first character
which requires transmission causes the interface to be powered
up. A pause of approximately 2 seconds is allowed for the
interface to settle down and then the character is sent.
Further characters are not affected in this way. Once powered

REV. HC. 060CT _ PAGE 5-35

HUSKY COMMUNICATIONS SECTION 5.7

the interface is latched on until the HUSKY is switched off or
power removed using an OUT instruction in either BASIC or
machine code.

When the interface is powered up it may cause spurious
characters to appear to be sent out, causing problems with the
receiving system. These may be overcome by powering the inter-—
face, prior to requiring the data, by sending any character as
soon as the HUSKY is switched on. A BASIC LPRINT command will
achieve this.

Alternatively, the interface mayvbe controlled as follows:
our 132,1
will turn the interface on and
our 132,0
will turn the interface off. If the interface is turned off

after characters have been sent, then further characters will
, not cause the interface to be powered up and they will be lost.

REV.HC.060CT ' PAGE 5-36

5.8

5.8.1

5.8.2

5.8.3

5.8.4

5.8.5

5.8.6

HUSKY COMMUNICATIONS SECTION 5.8

TERMINAL EMULATION

Application
In Terminal Emulation mode, HUSKY can be used as:

a) A remote terminal for dial-up time-share computer
services.

b) As a peripheral to other computers.

c) As a portable 'Telex', able to communicate with other
HUSKIES or data terminals.

Configuration

HUSKY's RS-232 serial interface is configured to represent a
Data Terminal Equipment (DTE) for compatibility with Modems and
other items. (See Appendix III for details).

Operation
First, check that the communication port is correctly
initialised (see Section 5.3).

Selection

From 'Main Menu' select 'TERMINAL EMULATION' mode. Press
'ENTER'. You are now in HUSKY's remote computer terminal
simulation mode.

HUSKY is now ready to communicate.

Keyboard entry causes characters to be transmitted, including
control characters (see Appendix I).

Characters sent to the HUSKY will appear on the screen if
printable. Upper and lower case alphabets are available. (The
standard HUSKY only transmits upper case).

To return to 'Main Menu', type control HELP. HUSKY will leave
terminal emulation.

Protocols

Any protocols selected will be observed by HUSKY's communication
software package automatically. Remember that block protocols
like ACK/NAK will not transmit unti 'ENTER' (CR) IS PRESSED.

Access from Basic

Terminal Emulation may also be entered from Basic with the
command 'CRT'. See Part 3, HUSKY BASIC Programming, Section
3.3.1.1, for details.

REV.HC.060CT PAGE 5-37

PART 6

6.1
6.2
6.3
6.4
5.5
6.6
6.7

- ACCESSORES

TECHNICAL DATA & ACCESSORIES

SPECIFICATION

REPLACING HUSKY FIRMWARE
CASE SEALING

BARCODE SCANNING
BATTERY CHARGER

A/D CONVERTER

CASSETTE TAPE RECORDER

HUSKY TECHNICAL DATA ' ’ SECTION 6.1

BN SPECIFICATION

6.1.1 PHYSICAL

Construction :Lightweight aluminium alloy (LM6)
casting

. Size :9.5" x 8" x 1.75" (24.1 x 20.3 x 4.4cm)
Weight :2Kg.
(including batteries)
Sealing :Waterproof against accidental immersion.
Colour :White, Military green
Straps :Clip-on shoulder strap

6.1.2 FACIA

Screen :4 lines of 32 characters
:5x7 dot matrix alpha-numeric, independ-
ent cursor line.
:Daylight visible liquid crystal display.

Keyboard :40 Keys arranged as 4 rows of 10 QWERTY
type format.
sTactile 'feel' with audio feedback and
auto repeat.
:Fully waterproof

6.1.3 PROGRAMMING

Language :Built-in Basic interpreter (the best
known programming language) for user
programming via HUSKY keyboard and
display.

Size » :32K machine typically allows storage of
approximately 2000 floating-point
variables and 800 lines of program.

Storage :Program stored indefinitely in non-
volatile memory, or easily exchanged
with other HUSKIES or computers.
:Basic interpreter stored in firmware -
doesn't use memory space.

Flexibility :HUSKY programming suits every need;
programs can be 'locked away' to avoid
unauthorized tampering, or accessible
for easy field modification at users'
discretion.

REV. HC12JUL PAGE 6-1

6.1.4

HUSKY TECHNICAL DATA

COMMUNICATIONS

Type

Configuration

Baud Rate
Protocols

REV.HC12JUL

SECTION 6.1

:RS-232/V24 serial port on standard 25-
pin 'D' type connector. True RS-232
levels.

:Entirely software controlled. All
parameters can be pre-set by the user or
commanded by applications programs.

:Full or half duplex operation with local
'ECHO' mode.

:Transmit and Receive parameters set
independently.

:50, 75, 110, 150, 300, 600, 1200
:Standard 'Invisible' protocols for flow
control and security and transparent to
user programs.

(Some protocols are optional - consult
factory for details).

:Formats provided include:
a) None - Simple 'TTY' communication

b) XON/XOFF — used by most mini and
mainframe computer systems.

c) ETX/ACK - used by many popular
printers.

d) ACK/NAK - for secure telephone
communication.

e) Systime - asynchronous block-oriented
protocol with BCC checks.

f) Level 3 - asynchronous block-oriented
protocol with identity and line turn-
around features.

g) 2780~ Fully synchronous implement-—
ation.

h) 'PIP' - as implemented in CP/M -
allows hex dump/load of memory
contents.

PAGE 6-2

6.1.5

6.1.6

HUSKY TECHNICAL DATA

Error Checking

Handshaking

"Modem Control

MEMORY
Type
Retention
Capacity

Firmware

Upgrading

Real time Clock

Batteries

OPTIONS

I/0 Port

REV.HC12JUL

SECTION 6.1

:0dd, even or no character parity
generated (transmit) or checked
(receive). BCC and CRCC checks as

required by protocols

:Hardware RS232/V24 handshaking lines RTS
and CTS are user selected.

:Full modem control signals available to
option, including synchronous clocking.

:CMOS low power semiconductor RAM.

:Triple battery supported non-volatile
design.

:Available in size options of:
32K, 48K, 64K, 96K and 144K bytes.

:Every HUSKY has a 32K firmware space
used for the Basic interpreter and
housekeeping features.

:Memory sizes can be upgraded on-a
return—to-factory basis.

:Microprocessor accessible time-of-day
and calendar clock. Totally independent
of microprocessor.

:4 Main batteries 'C' cells, Ni-Cd re-
chargebale for daily use, Mallory Mi1400
for long shelf life and reliability.
Life 14 hours (rechargeable) 45 hrs
(Alkaline) approximately.

:1 Secondary Mallory PX23 mercury
battery.

:Emergency - factory fitted lithium cell
guards against data loss in extreme
circumstances.

:This port is suitable for communication
with electronic instruments, measuring
devices, etc.

PAGE 6-3

6.1.7

HUSKY TECHNICAL DATA

Appearance

Application Software

ACCESSORIES

Printers

Carrying Case

Acoustic Coupler

Battery Charger

Conmunication Leads

A/D Converter

REV.HC12JUL

SECTION 6.1

:Available to special order on 32K and
larger HUSKIES.

:Special paint schemes, logos and
graphics can be supplied to special
order.

:DVW will supply complete application
packages at moderate cost to agreed
customer specifications, or undertake
training of customer personnel.

:HUSKY interfaces, via its flexible
serial port, with most types of printer.
However, DVW can supply particular
printers on request, including:

:Tandy Line Printer VII. Very low cost,
compact.

:Centronics 152/4. 132 column, 150
char/sec., 15" fan—fold paper.

:High-quality leather protective case
with folding cover flap. Supplied with
shoulder strap and unique 'hand-free'
harness.

:The use of a permanently installed modem

is recommended. For situations where
this is not practical, DVW can supply
the Sendata 'Series 700' originate-
answer acoustic coupler for reliable
telephone communication.

:Battery charger provides recharging of
the installed Ni-Cd batteries whilst
still inside HUSKY. This allows
charging even when the HUSKY is in use.

:DVW can offer serial communication
leads; details available on request.

:Installed internally within the HUSKY,

the A/D converter provides 12 bit
conversion and an 8-channel analogue
multiplexer. This option is not avail-
able with parallel port-equipped
HUSKIES.

PAGE 6-4

HUSKY TECHNICAL DATA ’ SECTION 6.1

HUSKY is housed in a robust cast aluminium case consisting of
separate 'lid’' (containing the keyboard and protective screen)

and 'base' (containing batteries, electronics and connectors)
units. See Fig.6.1.

Fig.6.1

REV.HC12JUL PAGE 6-5

HUSKY TECHNICAL DATA SECTION 6.2

6.2 REPLACING FIRMWARE

DVW pursue a policy of continuous improvement in HUSKY's
performance.

Users may wish to update their HUSKY operating system to a later
version, as enhancements become available. These instructions
are to facilitate the quick exchange of the program ROM's by the -
user. It should be stressed that care should be taken in
performing this operation as it is easy to damage the HUSKY
internally, despite its tough exterior!

If any doubt is felt then the unit should be returned to Husky
Computers or the local agent.

6.2.2 - Removing the Lid
The HUSKY should be switched off before commencing any work, but
it is unnecessary to remove the batteries. When the 1id is off
care should be taken that no foreign bodies, particularly metal
objects, fall into the case.

The 1id is removed by unscrewing the eight 3mm Allen headed
bolts around the periphery of the base (see fig 6.2.) with the
unit face down on a soft, swarf-free, surface. By holding the
1id to the base the HUSKY may be turned back over to be the
right way up. The 1id may then be swung forward to reveal the
inside of the HUSKY (see fig. 6.3). There is a flat connecting
strip linking the keyboard to the main electronics board. This
lead does not need to be removed. The 1id may be placed face
down in front of the base.

6.2,3 Releasing the RAM Board
This operation is only applicable to 32K and larger HUSKIES. If
the optional parallel port is fitted then remove the 16 pin
d.i.l. plug on the top right limb by gently prising with a small
screwdriver. The RAM board itself is fixed by two cross—head
screws at the front and by two 3mm nuts to the display mounting.
These should be removed. (See Fig.6.4)

The RAM board will now swing to the left into a near vertical
position. DO NOT FORCE (see fig. 6.5).

The firmware EPROM's can now be seen at the front to the left on
the main board.

16X HUSKIES do not have a RAM board fitted. The EPROM's are
visible as soon as the 1id is removed.

6.2.4 Replacing the EPROMs
There are four EPROMs numbered 0,1,2 and 3. These are placed
from right to left in sockets IC27, IC26, IC25 and IC24
respectively.

HUSKY TECHNICAL DATA ’ SECTION 6.2

Fig.6.3

REV.HC12JUL PAGE 6-7

HUSKY TECHNICAL DATA - SECTION 6.2

Fig.6.5

REV.HC12JUL . PAGE 6-8

6.2.5

6.2.6

6.2.7

HUSKY TECHNICAL DATA ’ SECTION 6.2

These may be taken out using either a chip removing tool or the
angle of an Allen key. Do not use excessive force in removing
them but gently prise them from the sockets.

The new set of EPROMs may be fitted in the same order. The
parts are orientated with pin 1 at the top left. This is
denoted with either a mark or a semicircle removed from one end
of the chip. If the 8K byte, 2764 EPROM are used, then there
are only 24 pins to fit in the 28 pin sockets provided. They
are mounted as close to the battery tube as possible with four
spare holes above pin 1.

Extreme care should be taken inserting the EPROMs as it is very
easy to fold a pin over, or not to insert it into the socket.

Before starting reassembly check that all the pins are in
sockets and that the EPROMs are pushed fully home.

Replacing the RAM Board
The board is now swung back into position and the 2 screws and 2
nuts replaced. If the parallel port is fitted, replace the 16
pin connector. Support the back of the board when pressing the
parallel port connector home.

Replacing the Lid

Ensure that there is no dust or dirt on the inside of the window
or on the LD display. The display is easily scratched so care
should be exercised.

The 1id can now be swung into position. The flexible strip will
slide back under the fitted RAM board. Push the 1id assembly
gently toward the top of the unit to achieve this.

The 1ip around the inside of the 1id will fit inside the box.
The unit can now be inverted and the screws replaced. Tighten
down evenly until there is no gap around the sealing joint. The
HUSKY is now ready for use.

Changing the Desiccant

Approximately every twelve months the desiccant should be
changed or replenished. Access is as for the EPROMs, the silica
gel sachet being placed just over them.

Note that the humidity indicator strip in the bottom right
corner of the display reverts to a deep blue colour soon after
re-assembly. If the indicator does not take on a blue colour,
suspect the desiccant.

Used desiccant bags can be recharged by heating to 80-90 degrees

centigrade in an oven for 1-2 hours. Altrnatively, a microwave
cooker will do the job in a few minutes!

REV.HC12JUL PAGE 6-9 ..

6.3.2

6.3.4

6.3.5

HUSKY TECHNICAL DATA SECTION 6.3

CASE SEALING

Standard HUSKY

All HUSKIES are built with integral '0' ring seals to provide a
high degree of protection against atmospheric moisture,
corrosive gases and accidental immersion.

The Seals
HUSKY has 3 principal seals
: The 1id, or cover seal
: The main battery seal
: The secondary battery seal

Remember that the battery compartments are vented to the
interior of HUSKY.

NEVER OPEN THE BATTERY COMPARTMENTS IN THE RAIN!

The Lid Seal
This is a large '0' ring seal running in a cast groove in
HUSKY's 1id casting. The seal seats on the machined face of
HUSKY base.

Always ensure that the seal is firmly seated in its groove
before assembling 1id to base.

The Battery Seal

These are smaller '0' rings running in machined grooves in the
battery plugs and seating in machined faces in the HUSKY
casting. These seals require a smear of silicone grease to
assist in seating.

Seal Specifications .
The seals used in HUSKY are specified as follows:

Seal Dimensions Standard HUSKY

Part No. Part No.
Lid 3mmx740mm 206-534-4470 279-330-3
Main
battery 2mmx80mm 206-026-4470 279-330-2
Standby
battery 1.5mmx30mm 206-016-4470 279-330-1.5

Replacement seals can be obtained from Husky Computers.

REV.HC12JUL - ‘ PAGE 6-10

6.3.6

6.3.7

HUSKY TECHNICAL DATA d SECTION 6.3

PRESSURE RELIEF

Under certain circumstances (change of altitude, etc) the
interior of HUSKY may have a substantial pressure difference
compared with the environment. This can lead to two
consequences in the standard HUSKY:

1) Internal overpressure: a visible 'ballooning' of the
keyboard, making the keys stiff and difficult to
operate.

2) Externaloverpressure:a tendancy to ingest any
rainwater adjacent to the seals, and in extreme cases,
the possibility of activating the keys.

In either case, any pressure differential can be released by
slightly loosening.the standby battery cap.

If you are taking HUSKY on an airline trip, this is a sensible
precaution to take.

Desiccant

HUSKY's interior is kept dry by an internal store of silica gel
desiccant, kept in a muslin bag. The dryness of HUSKY's
interior is essential to its correct operation, and is indicated
by a humidity indicator in the bottom left-hand corner of the
display window.

The colour of the indicator should be checked at intervals.

THE HUMIDITY INDICATOR MUST ALWAYS BE BLUE

If it takes on a pinkish colour, the desiccant must be changed
or restored promptly to avoid corrosion of internal parts. If
the colour changes immediately after an accident involving water
or high humidity, a fault has occurred in the sealing, and there
could be water inside the unit.

If you suspect that water has entered the interior, you MUST
take the following action:

1 Remove the main battery

2 Remove the standby battery

3 As soon as practicable, remove the 1id

4 Disconnect the lithium cell at the top left-hand comer of
the main printed circuit board. (The cell is retainsd by

a phosphor bronze clip). Prise this up, allowing the cell
to drop out with the HUSKY inverted.

REV.HC12JUL PAGE 6-11

HUSKY TECHNICAL DATA SECTION 6.3

5 Dry out the HUSKY, but not above 70 degrees C. Don't
replace batteries or battery plugs until the unit is
completely dry. Use of a conventional hair dryer is
recommended.

The desiccant bag can either be replaced or re-charged by heat-

ing to 80-90 degrees C in a dry environment for 1-2 hours. See
Section 6.2.7.

REV.HCI2JUL ° ' PAGE 6-12

6.4
6.4.1

6.4.2.

TECHNICAL DATA AND ACCESSORIES ‘ SECTION 6.4

BAR CODES AND LIGHT PENS

The standard HUSKY is capable of reading 2 types of barcodes:

a) Code 39
b) EAN 8/13

Other codes are available to special order.

The "Special Facilities" menu is used to select which barcode
format the HUSKY will read.

The options are displayed by using the | and | keys, with the
displayed option being selected by pressing 'Enter'.
Example: :

If the display reads:
Barcode - EAN 8/13

and 'Enter' is pressed, the HUSKY will read only EAN 8/13 bar-
codes.

This "Special Facilities" menu is accessible directly from BASIC
by implementing a system call. The sequence:

A=ARG(57)
A=CALL (5)

will place the HUSKY in this menu.

Wand Scanning Techniques
There are a few simple rules to follow when using a hand held
wand:

Check that the tip of the wand is free from dirt. Prolonged use
of the wand may lead to a build up of dust inside the tip,
covering the lens. To check for this the tip must be unscrewed,
and if dust is found, then a gentle wipe with a soft cloth will
remove it. The performance of the wand will not be immediately
affected by a build up of dust, but ratber a gradual decrease in
the reliability of the wand operation. A weekly check should be
all that is required for normal use.

The tips of certain wands are made of plastic and as such,
pressing the wand firmly onto the bar code will result in tip
wear. This will affect the wand performance since the focal
length of the lens will not coincident with the distance between
the barcode and the lens, i.e. the bar code will appear to be
'out of focus'. It is recommended tlat the wand be held cently
in the hand and moved lighlty across the bar code for bes
results.

REV. BC12JUL PAGE 6-13

6.4.3

TECHNICAL DATA AND ACCESSORIES SECTION 6.4

The scan should be carried out at a constant speed with the wand
in contact with the barcode throughout the scanning period. The
scan should be at right angles to the bars of the bar code.
However, the HUSKY tolerates a considerable variation in the
scan technique. The scan can be slow, fast, traversed across
the bar code in an arc rather than a perfect straight line, or
even scanned in a 'wavy' line, provided that the wand remains
within the bar code region.

The HUSKY will allow both Code 39 and EAN 8/13 bar code types to
be scanned either left to right or right to left.

It is not necessary to place the wand precisely at the beginning
of the bar code before a scan since the HUSKY will work out
which information transmitted from the wand actually
corresponds to the bar code itself. If the wand is resting on a
bar code, it is possible to move the wand to either end of the
bar code and then scan in the opposite direction. The HUSKY
will then work out the beginning and end of the bar code.

HUSKY will allow a maximum of 16 characters to be represented by
a Code 39 bar code. This should be borne in mind if the reader
intends to produce his own Code 39 bar codes. If larger codes
are required, contact the factory for details.

European Article Number,EAN 8/13
There are 2 EAN barcode formats:

a) EAN 8 Short Version
b) EAN 13 Full Length Version

Both a) and b) are used in marking retail articles of sale in
shops, hypermarkets, warehouses, etc.

EAN 13 is the general name used to describe a series of barcode
formats of which ANA (United Kingdom) is one particular version.
See Fig.6.6 for precise details.

The general form of EAN 13 is 13 all-numeric digits, comprising:
First 2 digits

Prefix denoting the National Numbering Authority administering
the remainder of the number.

Next 10 digits

National Article Number, the structure of which is determined by
the National Numbering Authority.

REV.HCI2JUL PAGE 6-14

TECHNICAL DATA AND ACCESSORIES 2 SECTION 6.4

Last digit

Check digit, calculated by modulo-10 arithmetic, i.e:
Prefix National Article No. Check
Pl P2 XXXXXXXXXXXXXXXXXXX Cc

e.g:
5000183962862

In the above example the prefix is 50, i.e. the numbering
authority is ANR, the United Kingdom's authority. The National
Article Number is 0018396286 and the check digit is 2.

The EAN 8 system is an entirely independent series of numbers of
8 Digit length. The general form of which is:

First 2 digits
Prefix, as in EAN 13

Next 5 digits
National Short Article Number
Last digit
Check digit, as in EAN 13
Prefix National Article No. Check
Pl P2 XXXXXXXXXXXXXXXXXXX C
e.g:
50159109

where, the prefix is 50 and so the National Numbering Authority
is ANA. The Short Article Number is 15910, and the Check Digit
9.

The general format of EAN 13 is shown in Fig.6.7. As can be
seen, there are 3 types of guard patterns; 2 normal guard
patterns and a centre guard pattern. Only 12 of the 13 digits
are represented by barcodes and the 13th digit must be
calculated by considering the mixture of characters which
represent the first 6 digits. The first 6 digits are
represented by characters chosen from either Set & or Set B,
whilst the last 6 digits are represented by characters from Set
C only. See Fig.6.8. The allowed combinations of Set A and Set
B characters are shown in Fia.6.9.

REV.HC12JUL PAGE 6-15

TECHNICAL DATA AND ACCESSORIES SECTION 6.4

The general format of EAN 8 is shown in Fig.6.10. Note in this
case that the first 4 digits are all chosen from Set A and the
last 4 digits from Set C. Again, the guard bars are present.

Due to the fixed parity (all from Set C) of the last 6 digits in
EAN-13 and the last 4 digits in EAN-8, both types of barcodes
may be scanned in either direction, i.e. the barcodes are bi-
directional.

REV.BC12JUL i PAGE 6-16

TECHNICAL DATA AND ACCESSORIES

FIG.6.6 ASSIGNMENT OF PREFIX DIGITS BY EAN

Prefix Values

00-09
20-29
30-37
40-43
49

50

54

57
61-62
64
65-69
70

73

76

77
80-83
84

87
90-91
978
979
98-99

(Reserved for UPCS

In-Store Numbers

Gencod (France)

OGS (Germany)

Distribution Code Centre (Japan)

ANA (United Kingdom)

ICODIF (Belgium)

Dansk Varekode Administration (Denmark)
(Reserved DCI)

The Central Chamber of Commerce (Finland)
(Reserved for DCI)

(Norway)

Swedish EAN Committee (Sweden)

SECTION 6.4

Schweizerische Artikelkode Vereinigung (Switzerland)

APNA Australia
(Italy)

AECOC (Spain)

UAC (Netherlands)
BAN - Austria
ISBN

Reserved for ISBN

Coupon Numbers

REV.HC12JUL

PAGE 6-17

TECHNICAL DATA AND ACCESSORIES SECTION 6.4

FIG. 6.7

12 CHARACTER BAR CODE

NORMAL CENTRE NORMAL
GUARD GUARD GUARD
PATTERN PATTERN PATTERN

6 LEFT HAND 6 RIGHTHAND
NUMBER NUMBER
CHARACTERS CHARACTERS
WITH VARIABLE WITH FIXED
PARITY PARITY

EEENRANRRRN

5 1012345%6 78900
e—]

13th DIGIT ' HUMAN-READABLE
ENCODED BY CHARACTERS INOCR-B

VARIABLE PARITY

REV.HC12JUL
ek ’ PAGE 6-18

TECHNICAL DATA AND ACCESSORIES - SECTION 6.4

FIG. 6.8 CODING OF NUMBER CHARACTERS

VALUE OF

CHARACTER NUMBES‘)SETA NUMBER)SETB NUMBERSET C

(even (even)

=

=
]
A | R

REV.HC12JUL PAGE 6-19

TECHNICAL DATA AND ACCESSORIES

FIG. 6.9

COMBINATIONS OF SET A. AND SET B. CHARACTERS

Value of Number Sets used for Coding left
13th Digit half of symbol
1 2 3 4 5 6
0 A A A A A A
1 A A B A B B
2 A A B B A A
3 A A B B B A
E A B A A B B
/5 A B B A A B
6 A B B B A A
T A B A B B A
8 A B A B B A
9 A B B A B A
REV. HC12JUL

SECTION 6.4

aGE 6-20

TECHNICAL DATA AND ACCESSORIES

FIG. 6.10

8 CHARACTER BAR CODE

NORMAL CENTRE NORMAL
GUARD

GUARD
PATTERN PATTERN PATTERN

¥

4 LEFTHAND 4 RIGHTHAND
NUMBER NUMBER
CHARACTERS CHARACTERS
WITH FIXED WITH FIXED
PARITY PARITY

]] "

2012"3451
]

HUMAN-READABLE
CHARACTERSIN OCR~-B

REV. HC12JUL

SECTION 6.4

PACE A-21

6.4.4

TECHNICAL DATA AND ACCESSORIES SECTION 6.4

CODE 39

Code 39 is an alphanumeric bar code consisting of 43 data
characters (0-9, A-%, 6 symbols and space) and a unique start/-
stop character "*". These characters are represented by light
and dark bands, as shown in Fig.6.11.

Code 39 is so named due to the structure of each character being
represented by 9 elements (5 bars and 4 spaces) 3 of which are
wide and the remaining 6 are narrow. A wide bar or space is
assigned a value 1, and a narrow bar or space is assigned a
value 0. Gaps between characters have no value.

The number of characters in a code is limited only by the
capabilities of the reader equipment or by human factors if a
hand held wand is used, although HUSKY places a limit of 16
characters for normal use.

Each code starts and ends with an asterisk, "*", thus the code
may be scanned in either direction.

The width of a unit bar may vary considerably allowing various
printing methods to be used to produce the characters, e.g:
offset, letter press, dot matrix printers.

The recommended standard density is 9.4 characters per inch, but
a density of 1.4 characters per inch may be used for corrugated
containers.

A complete Code 39 bar code consists of a leading white space
(referred to as a quiet zone), a start character, data
characters, a stop character and a trailing quiet zone.
A check digit may be produced if required and is modulus 43.
The check digit is the last data character and calculated in the
following manner:
Suppose the data characters are:

12345ABCDE/
then the sum of the data characters are:

14243+4+5+10+11+12+13+14+40=115

REV.HC12.001. ’ PAGE 6-22

TECHNICAL DATA AND ACCESSORIES SECTION 6.4

Now, 115/43=2 remainder 29.

The check digit is the character corresponding to the value of
the remainder, which in this example is 29, i.e "T",

Therefore, the complete data character sequence is:
12345ABCDE/T

The numeric values assigned to each Code 39 character is shown
in Fig.6.12.

REV.HC12JUL PAGE 6-23

SECTION 6.4

TECHNICAL DATA AND ACCESSORIES

CODE 39 CODE CONFIGURATION

Fig.6.11

‘g @|qe L Ul paulap , 3SIBISE,, 8Y] WOoJj Jounsip S Jajoeieyd dois/uels aul ey 810N
|0QWAS 8P0D Jeq AIBAS JO JBIOBIBYD ISB| PUB IS1lj 8Yl 89 I1SNW YOIyMm J8joBIBYD dojs/uels enbjun B $8j0usp |0qQUIAS %8y |

LLLO oocooo @ H H EHE % 1000 000 1 H H B B
L0k coooO B H HEHHEH B + 1000 oo N B OH OB BN Y
L0kL 00O B HEH H = / 0100 o0 H HE HN EE
OLLl coooo lEH B H B S 0400 000 HEHE E EE B !/
0001t OLl0O N NN W B B ~ 0400 oloor H HE H N BN H
0001 ol0l0 B B W B MW30vds| 0100 fooo N B EHEE O
0001 ol00f B EE B E =N - 0100 oorto HEH HE BB -
0001 00O N BN B E B - 0400 000 HH HE W BN 3
000+ oot H H HE BN B 0100 lol00 I H B B E C
000+ oolor H H HE H BE A 0100 ool HE B BN B O
000+ o000 I N EE OE B X 0100 00 L H B BN W S
0001} ool H H H HE HE m 0100 o0 N H H E BN v
000+ 000 I H H BN H A 0010 ollo0 B BN BN E N O
0001+ oo I H HE BEE n 0010 olol0 H N B EEE ¢
1000 oo W N BN E R L 0010 o0 B HE H B EE s
1000 ol0l0 H EHE E B E S 0010 el B B BN B
1000 olcor W HE H H EE 0010 collO M H N BN H o
1000 (oo N HEE B B E O 0010 color H H HE B HE ¢
1000 colto W W HE BEm E d 0010 0100 I W BN EH v
1000 c0l0f H H B EEE O 0010 000k H H EH HE BN ¢
1000 o0 I W OEHE E E N 0010 00 I H E BEE B ¢
1000 coork H H H HE BN W 00140 jooo} N H B H B
S30VdS sHva NH3LLVd ‘HVHO S30VdS sHva NH3Lllvd ‘HVYHO

uoneunbyuod apo 6€ 3000

L37avi

PAGE 6-24

REV.HC12JUL

TECHNICAL DATA AND ACCESSORIES

Fig.6.12 CODE 39 CHARACTER VALUES

0 0 F 15 U 30
1 1 G 16 V' 31
2 2 H 17 W 32
3 3 I 18 X 33
4 Y J 19 Y 4
5 5 K 20 Z 35
6 6 L 21 - 36
T 1 M 22 . 37
8 8 N 23 Space38
9 9 0 24 $ 39
A 10 P 25 / 40
B 11 Q 26 + 41
c 12 R 27 % 42
D 13 S 28

E 14 T 29

REV. HC12JUL

SECTION 6.4

PAGE 6-25

TECHNICAL DATA AND ACCESORIES SECTION 6.5

6.5.1

6.5.2

6.5.3

BATTERY CHARGER

THESE INSTRUCTION REIATE TO PERSONNEL SAFETY AS WELL AS RELIABLE
OPERATION OF HUSKY AND BATTERY CHARGER. IT IS IMPORTANT THAT THEY
ARE READ AND UNDERSTOOD.

DESCRIPTION

HUSKY's rechargable battery system consists of four rechargable
cells and a HUSKY battery charger.

The cells are C size Nickel Cadmium (NiCad) of nominally 1.2
volts, 2.2 Ah and are capable of being charged at 65mA
continually.

The special HUSKY battery charger is the only unit which may be
used to recharge the NiCad batteries when they are installed in
HUSKY. The use of an ordinary AC adapter/battery eliminator may
damage HUSKY or the batteries.

WARNING

When using the charger be absolutely certain that HUSKY has four
NiCad cells correctly aligned and no alternative type is present.
Do not even mix NiCads of differing age or state of charge. A
risk of chemical leakage, gassing or explosion exists if anything
other than a matched set of recommended NiCad cells are charged.
Do not attempt charging at temperatures of 50°C or less.

The charger containes lethal voltages, under no circumstances must
it be opened, in any way tampered with, or used for any other
purpose. It must of course be kept dry. There are no user
serviceable items inside the case.

If the charger is suspected of being faulty then the fuse inside
the mains plug may be changed for a similar fuse not exceeding 2
amps rating. The charger unit is fully protected against
continous short circuits but if unlikely fault conditions arise
which cause overheating to the charger, it will self destruct,
quietly and safely. The charger is double insulated, making no
earth connection.

OPERATION

To use the charger unit the following procedure is recommended :
1) Switch off HUSKY.

2) Plug the charger into HUSKY's LEMO connector.

3) Plug the charger into the mains.
4) Finally switch mains on.

REV.HC12JUL ‘) PAGE 6-26

6.5.4

6.5.5

SECTION 6.5

See section 4.6 LEMO CONNECTOR, for details of connecting and
removing the LEMO plug.

HUNTER operation is possible during use of the charger but the
current drain will counteract the charging current and
consequently prolong the time to fully charge the batteries.
Removal of the cells under this condition is forbidden.

As with all electrical apparatus the charger should be
disconnected from the mains when not in use. Only 240 VAC (220 to
250V) mains, 50 or 60 Hz is suitable for standard units. Chargers
for alternative mains supplies, e.g. 110V, are available.

Exhausted batteries will typically be fully charged in 12 hours,
overnight charging is a popular practice.

NICAD REPLACEMENT

It must not be forgotten that rechargable batteries do not have an
unlimited life and will ultimatly need replacing as do car
batteries. If the batteries become exhausted after little use
then the set may need replacing. Their life expectancy can be
several years but this is reduced by repeated or prolonged total
discharge and by excessively high temperatures.

NOTE : Several discharge/charge cycles are required before NiCad
cells reach their peak capacity. This type of battery will also
self discharge, especially at elevated temperatures, which can
result in a fully charged set of batteries becoming flat in a few
weeks. An occasional charging session, say, every fortnight is
recommended if HUSKY is being stored.

MAINS OPERATION

For critical or remote operations, permanent charging may be
called for. This acceptable provided ventilation around the
charger and HUSKY is good, but ageing of the cells may be
accelerated. Annual replacement would be a prudent action in this
instance.

REV.HC12JUL PAGE 6-27

TECHNICAL DATA AND ACCESSORIES

- 6.6

6.6.1

6.6.2

6.6.3

SECTION 6.6

‘IN'IERNALM(XI]E’IODIGI']RLC(NVEKIER

OPTIONS

Specify 50Hz or 60Hz when ordering to obtain suitable rejection of

line frequency pick-up.

CONNECTOR

Husky Socket: Cannon
Matching Plug: Cannon

KPT02E-12-10P
KPT06F-12-10S

10 pin Locking Bayonet - circular type

PIN CONNECTIONS

»

AcChl F Ch 2
(8 channel) BCh 0 G Ch 6
(common ground) C HCh 4
D Common JCh5
E Ch 7 K Ch 3

(See Section 6.6.7 for diagram)

NOTE: Channels 0,1,2,3 incorporate filters of 50 ms time constant.
Allow up to 1 second for accurate readings.

INPUT CHARACTERISTICS

Input impedance, all channels: 10 M

Voltage range:
Resolution:

Calibration:
the

Overrange indication:
Integration period:

Version 50Hz:
controlled)

Version 60Hz:

Conversion rate using
(approximately) :

REV.HC12JUL

+ 4V
1mv

The display reads in milivolts, in
range —4096 to +4095.

Outside +4095mv

20.00ms (crystal
16.67ms (crystal controlled)

ADIN: 3 readings per second

PAGE 6-28

TECBNICAL DATA AND ACCESSORIES

6.6.4

Mains (line) rejection:

Accuracy:
Channel Selection:

Number of Channels:

SAMPLE PROGRAM

10 OPCHR1

SECTION 6.6

60 dB on channels 0,1,2,3. DC readings
are unaffected by 10V rms superimposed
50/60Hz line pick up. Channels 4,5,6,7
provide rejection of line frequency
only. Note that the Husky is
available in 2 versions. The line
rejection is only true if the
appropriate version is selected to
match the local line frequency up to
about 1V p—p.

+10mv
Program Control

8 numbered 0 to 7

20 ?"ANAIOG READINGS : (MILIVOLTS)"

30 FORCH=0T07
40 OPCHR 15,CH*8,1+CH/4
50 2CH,:ORCHR 8,61 .

60 2ADIN (CH),

70 NEXT

80 INCHR"PRESS ANY KEY TO REPEAT....",K

90 GOTO 10

NOTES

CH is the Channel number 0 to 7.

Line 10 clears the screen.

Line 30 repeats the procedure for all 8 channels.

Line 40 tabulates the éight readings.

Line 50 prints the channel number =,

REV.HC12JUL

PAGE 6-29

TECHNICAL DATA AND ACCESSORIES SECTION 6.6

6.6.5

Line 60 issues a measurement and prints the channel value.
Line 80 allows the values to be read until a key is pressed.

Holding a key down will cause continual scanning. If any readings
is oversize, 9999 will be seen.

APPLICATION NOTES

1. The ADC is continually free running.
2. Source impedances of 1K or less are recommended.

3. Disconnected channels will give strange readings. If
necessary, connect to ground directly or through a 1K resistor.

4, The input common pin is connected to the HUSKY case.

5. Avoid excessive input voltages. Keep within the range -10V to
+10V DC to avoid damage. Up to 50V rms can be tolerated at
frequencies of 50Hz and higher.

6. In addition to (5), transient protection is included against
spikes of some hundreds of volts on all channels.

7. Where significant mains interference is present (e.g. 1 volt
rms) or for general metering, use channels 0 to 3 which
incorporate extra filtering. If the voltage suddenly changes or
after first connecting, allow about 1 second for the reading to
stabilise in the same way as conventional digital multi-meters.
No settling time is required after changing channel. If this
delay is unacceptable use channels 4 to 7 which give immediate
accurate readings where no interference is present.

8. Note that the 50Hz version offers no rejection at all of 60Hz
on channels 3 to 7, and similarly a 60Hz version offers no
rejection of 50Hz on channels 3 to 7.

9. There are no provisions for electronic adjustment for
calibration purposes. However, programmed calibration in software
may be used to achieve short term accuracy approaching lmV. For a
steady clean D.C. signal short term repeatability is excellent.

REV.HCI2JUL PAGE 6-30

TECENICAL DATA AND ACCESSORIES ‘ SECTION 6.6

6.6.6 EXTERNAL CONNECTIONS

The required plug is a military, sealed, 10 pin, 3 point bayonnet
connector to MIL-C-26482 manufactured by ITT CANNON. The part
number is KPT06F-12-10S.

A free plug is usually supplied with each A to D computer for the
user to wire up himself. However, further plugs are available
from suppliers such as STC Electronic Services, Harlow (0279-
26777). The STIC stock number is 18621B, the price approximately

#24 each.
INSIDE VIEW OF PLUG
Chl
H A B
Ch4 ChoO
Ch3 Ch5
Ché G K J C no connection
Ch2 F E D Common (case)
Ch7

REV.HC12JUL PAGE 6-31

TERMINAL DATA AND ACCESORIES SECTION 6-7

6.7 CASSETTE INTERFACE HUSKY TO CRISTIE

6.7.1 There are two altenative methods of interfacing these two units.

(a) HARDWARE HANDSHAKING
(b) SOFTWARE PROTOCOL (X ON/X OFF)

(a) allows files to exceed the capacity of one side of one
cassette, since both units standby while the cassette is turned
round or exchanged. There is no limit at all imposed on the file
size.

(b) permits the use of character, line or block transfers under
HUSKY control. Transmission is started from software. Note, that
when a cassette is turned over during playback the transmission
will only recommence if the HUSKY sends a DCl character (ASCII
decimal 17), limiting file sizes in many applications.

IMPLEMENTATION A B

Baud rate 1200 1200 (both send & receive)
Protocol none XON/XOFF (both send & receive)
Echo ¥ Y

Parity even even

Nulls 0 ' 0]

CTS X 6 4

RTS Y (important) Y

REV.HC12JUL : PAGE 6-32

TERMINAL DATA AND ACCESORIES) SECTION 6-7

6.7.2

CRISTIE SETTINGS

The Cristie unit has 16 internal switches which must be set
correctly. They are arranged in two blocks of 8, blocks 1 and 2.
The switches of each block are numbered 1 to 8 and are either ON
or OFF.

When received from the supplier the settings will be WRONG.

IMPLEMENTATION A B
(Hardware) (Software)

BLOCK 1, SWITCH 8 ON ON (Top)
(Upper, front) 7 OFF CFF

6 ON ON

5 ON ON

4 ON ON

3 OFF OFF

2 OFF OFF

1 OFF OFF (Btm)
BLOCK 2, SWITCH 8 OFF OFF (Top)
(Lower, rear) 7 OFF OFF

6 ON CON

5 OFF OFF

4 OFF ON *

3 OFF OFF

2 CFF OFF

1 OFF OFF (Btm)

REV. HC12JUL PAGE 6-33

TERMINAL DATA AND ACCESORIES SECTION 6-7

6.7.3 CABLE CONNECTIONS

HUSKY CRISTIE A CRISTIE B
25 way female plug 25 way male plug
2 (DOUT) to 2 (DIN) 2 (DIN)
3 (DIN) from 3 (DOUT) 3 (DOUT)
4 (RTS) to 20 (DIR) 4 (RTS)
5 (CTS) from 5 (CTS) 5 (CTs)
-— 6 (DSR) -- 6 (DSR)

link— 4 (RTS) 1ink—20 (DTR)

HUSKY Part number S5 FM4 S5 FM1

6.7.4 OPERATION SEQUENCE

TO RECORD

1. Press "Record" button.

2, Insert tape.

3. Send file from HUSKY

4, If necessary change cassette when full. Press "RECORD" before
insertion.

5. Press "END".

PLAYBACK : A B

1. Insert cassette 1. Insert Cassette
HUSKY will load
file as soon as 2. In BASIC send LOPCHR 17
LINPUT, LILOAD etc OR LPRINT Control Q
activates RTS. OR in VDU mode: Control Q

2. If the cassette * 3. If the cassette is turned
ends, turn over over, repeat (2).

6.7.5 OPERATING NOTES

1. If the HUSKY automatically runs your program at Power on, you
must stop it. With the HUSKY OFF, follow this procedure:

(a) Press Power ON.

(b) Press Esc. — This must be done very quickly after
(a). If the program continues, turn off and try
again.

(c) If the display freezes, continue by slowly keying-in
the code-number 56580.

If all is well the BASIC INTERPRETER will display "READY". If this

is not the case try again. (This procedure is deliberately
difficult to avoid accidental operation).

REV.HC12JUL . PAGE 6-34

TERMINAL DATA AND ACCESORTES SECTION 6-7

2. With "READY" displayed, type NEW, then press the ENTER key.
This action will totally erase the HUSKYs' memory and therefore
confirmation is sought. Press V.

NOTE If at any time the HUSKY is switched off, the BASIC
INTERPRETER can be re-entered by pressing POWER ON, ENTER then
ENTER again. "READY" will be displayed.

3. With "READY" displayed, type LLOAD, then press the ENTER key.
The HUSKY is now waiting for a program to be sent to it.

4. With the Cristie unit plugged into the mains, switched on and
connected to the HUSKY with the correct cable, insert the cassette
which holds the program, and close the cassette door. (Identical
to loading data).

5. When the program has finished loading, turn off the HUSKY, then
re-enter the BASIC INTERPRETER with the sequence ON, ENTER, ENTER.
Type the command RUN. Check that this is correctly displayed on
the HUSKY screen before pressing ENTER.

6. All programs will differ when RUN for the first time. It is
most important to NOT switch off the HUSKY whilst it is dimen-
sioning it arrays. If in doubt, leave it for a minute until it
bleeps, and a familiar display is seen.

7. Many programs feature SELFTEST in which case a CHECKSUM number
is displayed. It is worth recording this number since the same
program will always display the same number if correctly loaded.

8. If loading fails, check the communications parameters. To gain

access from the OFF state, press ON, ENTER, 1,1,1,displays " 3
Initialize communications™"), then ENTER.

REV.BC12JUL PAGE 6-35

()

