\O
o> 4
VEE
-
Sl - 3
Q-
- 2
= =
OmEER 5 O

TN TIVTIT IO TCT T J))))

' |

il

it

il

il

E |

il

111

il

i1

11

11

Il

i1

OWNERS MANUAL

i

7

11

B |

79-1056-8

Code No.

© OTATUNG (U.K)LTD. 1986

11

1T

LR LR LR U L L L L X R L A

—
|

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

CONTENTS
8§00 0 ey | e e B R S SRR, < 1
UNPACKING YOUR - EINGTEIN @56......c00cvcvvcnvrsnsnain 5
Connections and Features.....ceeeevevcvesccccennsnnes 5
BRBERFICR). SAEBEN . cois o oo i shaaninss e e inessoweeh il 7
PPRCAULIONS S 5o fi s wab i hnir LRGN Enis s 60 000 0 00 s 0 EN RS 7
Connecting Up
Using a M1} Colour MORItora s s oo e o aasinhts 8
Using A THMIRROR ki cuaiass ss e s s o scarcncosansss 9
Making a Back-up or Security Copy...coeeveeeenccenas 11
WHAE 1S A LOMPUIRRS soiiy L casslilllail s ooiiSaignsn i vie 13
The Display...... O b s s s v enacusnessee 15
COMRICAR TN sacrscrscsasnsasnonnssssssnsnsbnosns e 16
The Operating Systems......coceeveeieiccncencrecnnnes 18
High: LeveliJAngnages. coclamiliiil J. Svad. & FlF 19
INIRODUEINE DISES.svssnnninsnnsdibecvcossesnnas rasin &}
The Disc CASEEREe ini fuviin JIETNERN A woivu v dnse suve ve 21
Care -of Your DiSCS...ccoececcscnccosccrcesssene cuadens 182
WrITE PTOTECE TADS. . cccosscinsnsnsncssnisansninnssh =
Discs. and DBt it o cabie saas o VRS o0 o 00 5 0 e ulole WA 24
THE: KEYBOARRES L i 0ia SN DIBIEIING (5 ov « lsiiiain 27
Character (Typewriter) KeyS...vieeeveennnss AN RRRR 28
FURCLion. Faysasiass &0 Juhiiil Glliben o o6 vveufele ©REARGH 28
Ancillary Function KeyS...eeeveessececssscossssocoss 29
g0 b (el SRR A DB s s s enncnnsvresses 31
The Keyboard Trainer Program.........ceceeeesecccces 31
THE: OPERATANG SYSTENS. . . S IARIN S « 0.0 o 5 o5 o ALy ciALS 33
Machine Operating System (MOS)......iccevvevnnnnnnns 33
MOS Commands........ P T A P R T Y 34
File Naming ConventionS......vssescecccsscccssssnces 43
DOS. Commands.oinitd disics JGIB05 sesvssresvnssenses 45
BOS UL II IR s ua aamitai soLielo s BLTANUTRTV NG WV eT 52
Restdertt Aibdd Itames i ol SRR o0, o o Sk eIy 52
Disc'Based Utilities.cui.coiusverveveivenscnsaans 58
INTRODHEENG I EBASIE . aivalid B VS VW U Hdnecnsrss 63
The LANGUAGe..c.cccscccrccscsuaarssessscssscsssssscs 64
It AR . o i SR BRI D PP iV i dads 65
Deferrad Mode st (i R iindlitec siesovivives snos 66
GRABICE i s, 3is v A Sl s o vl RS0 BTN eV S0 & 67
Lo Sieiiie dde sl Sl B SMAREIET . &30 e Whie T . 68
Sond......aanbiunibaiies abions SEOEI scsssesesrssssssus 70
Programisdnn 4eie <o hhititns ACMMINE s csasssssstssseere 72
Progran Formet el ShirGnetiliiin i e ddedesves Pt R 5
ProgromStorage inRANLT S0 ol sdiv e e ae s 72
REServlE Nos 2 Lol 0L SN Jes e vavsscsnsdnsnaves 73
Errors AL L L o as it JARSARRG IBAG v s so e v slsenanses 76
Errors /SRRt e . i NGNS s s ssv e so i en enee 76
Editing .o aun ot Sve vl WA cvssvsossasesacs 77

Chapter

7

Chapter 8

Chapter

Chapter
Chapter
Chapter

Chapter

Chapter

Chapter

Chapter

9

10
11
12
13

14

15

16

SYSTEN COMMAND KEXD . st it ccticeccnccccccscannunns 79

NUMBERS: AND STRINES. 208 il uviiiiisciciosssavcnnes 81
L e | o RSRSCRREE §E AR E RIS SR PP o 81
Sring Daac v svainn s A IRRRIRARR L L s s v s s o nnvnecnen 83
FOriabDIeE . coicsocse s iR ULV L s voisnonnsnsse 85
AT BYS. A VT SNSRI I R R S s s cnsosnsanenonce 86
Expressions and OPEFators. .l Al i cceivensasnessine 87
EMPRESEIONE - 0 AR A BTN L s csvacnnnsvane 87
ATFICIIEEIC ODRPRLEOPS .. consnssvirssscsravsnmnnenns 87
Relational QperEtors il i e visicacnscasashorss 89
LOGICA!- DPErBtOrS.vunanthsbBetobbnssssononsesings 89
PRUGRAN STRUCTURES o SLAA VIR Vileosecrossssscssh 91
BERERROS.. . woivtin BI04 SRR SRV ca s vssinsssncse 91
BPBIEN . . s s ovcvssecscsnscnsantnnntssspeinsceiseess 91
LOOP s nmnnonssinis vh G0 st il isbns consese o s's o STLIO 98
BASIC RESERVED WORDS. . . VIR, R A Bd covvsnnnee 105 - 242
ERROR HANDLING WITHIN BASIC....veeeeeecnnans o 243
CHAINING AND SEMI-CHAINING PROGRAMS......cvovnvavans 245
FILE HARDLING IN BASIC...ciccvvevcrsncenossnsensnsa 247
P RN CORVERLIONS . ..o covnvivvonnsironsnnins 247
ACERREINE. FAdBE « s s vsvvcvassessssssnssssssnnenens 248
File NERITTNG TOMIENGS, i iiicisiocensnansens 249
PROGRAMMABLE SOUND GENERATOR.....cvesesvcscscsnsnns 251
REGISEMIS SR SACARRL AN L casserensnnsnes 251
SOUND: PrOgral .o ol L ANt e canassonensone 257
Sound ¥ardatton ity A0 e s tersscssssssnss 257
Special Sound Effects. i liliiiiivvicescesscosrones 258
GRAPHICS. TECHNIQUES. . . oo VR Gt iessscascsns pawina 263
SIS DPOIIIEL Ll AR AR s easvnsrssnsonais 263
L e SR P IR e 265
Use of: SYDOIS .. vi i il ALt idd i bh seessenes RV - E ! 268
SRR e o vivters™s o s e s s W WD DU Db s Wb s s s s a0 s v s a s asanse 271
SPOHAE. oo AT LA S s cs v svsvvsssnnnes el
Movement of Spritesi i i il iiiiveesicscsnsrsacans 279
MACHINE: CODE- LINEABE -+ - v ovvon MRt sonsnnsssssnvss 283
Machine Code Sub-Routines. iieeescssscscscses 283
Memory Locations and Contents........cocvevennnns 284
Machine Code ProgriSic i A Leseecosencncnnses 285
To Save Machine Code Programs........ccceeeeenness 288
BIBLIOBRAPHYccnnvinvnivnsd vo o s W3 ES s s s essssonns vees B9
GLUSSARYE. OF TERMS. o Wi U G il s sevesscsssrons e 291

APPENDICES

| 8 % % N Y L ¥ % N % B % % Y % A Y | 4 4

114

Ll

L A

INTRODUCTIO
Please READ ME

This handbook is intended to cover the setting up of the EINSTEIN 256
computer, and to introduce you to its various features.

It is divided into sections and chapters, at the end of each chapter is a
summary, which will remind you of the key items.

No technical handbook ever made very entertaining reading, but we hope and
suggest that you will at least read some of it whilst drinking a cup of tea,

and getting used to the idea of owning this computer.

There is a lot of information within these covers, some you may know, some
you may not. It is a good idea to read each section and make a mental note

of the key points (that is why there is a summary) .

For the real beginner, and those who may have forgotten a little, there is a
section on what is inside a computer, by way of simple explanations.

NOTE: Conventions.

1. You will often see some instructions requiring the use of special keys,
like CTRL & BREAK. In case you do not know exactly what that means, and
to save you the time and effort of typing C TR L, etc., it is done

thus :=

a. Press and hold down the CTRL key
b. Press, and release the BREAK key
c. Release the CTRL key

This procedure also holds good for "SHIFT-BREAK", but this time you can
use either SHIFT key. (They are identical).

2. Upper case functions, like the capital letters, are engaged by pressing
the SHIFT and whatever letter you want. You can stay in 'Upper Case'
letters by pressing the 'Alpha Lock' key. On the numeric keys (1-0) and
several others, you will see two sets of symbols. The upper one is
obtained by pressing the shift key and the symbol you need.

3. In this book, lots of examples are given. You are advised to try them,
experiment with them, invent your own variations: in short, get to know
your Machine. Every time you press a key, the data goes into what is
called a 'buffer'. There it will stay until ,ou do something else, like

pressing "ENTER".

4. For the rest of this book, we will assume that you will press the ENTER
key. (We will give you a prompt or two, first). Similarly, in BASIC you
will need to clear an old program out of memory. This is done by typing
N E W and then ENTER. We will leave that as "NEW". Clearing the screen
can be done two ways; typing CLS followed by ENTER, (or CTRL-L). From
now on we will just say clear the screen, or ELS.

For The Impatient:-

.I.

Connect up as illustrated in Fig. 0.1 below according to your system
components. Switch on at the mains plug. (Important Note: Refer to the
manufacturers instructions before connecting any equipment to the mains
supply).

Insert your Master Disc. (See Fig 0.2).

Press CTRL - BREAK

Select the program from the menu on the screen. (Or key DIR ENTER to
view what is on the disc, and then select your program (On Basic).

[

: COMPOSITE VIDEO
T.V. RECEIVER MONITOR

TAT1 TELEVISION
ADAPTOR

()
i

JOYSTICKS

=
e
=

EXTRA DISC DRIVE

EXPANS ION

HEADPHONES CASSETTE PLAYER PRINTER

Fig 0.1. System component connections
2

SR L AR L A A e L AN A R A L L LR L

Fig 0.2. Loading a disc.

EJECT BUTTON

B BN BT BT T e i S

Rl RO RN B RN BN RDOEDOEE I

CHAPTER 1
UNPACKING YOUR EINSTEIN 256

carefully unpack your Computer and check you have the following:-

The Computer

Monitor Lead

EINSTEIN 256 Owners Handbook

Master Disc, with Copyright Notice and Index Card
Quick Reference Card

Warranty Card

User Registration Card

Ee WS I R e

Inspect all items for loss or damage which may have occurred in transit. If
there is evidence of damage, please consult your Dealer as soon as possible.

There are several options available for your EINSTEIN 256:-

1. TM11 Colour Monitor,
2. TA11 Television Adaptor,
3. Second Disc Drive (available from you dealer).

CONNECTIONS AND FEATURES ON YOUR EINSTEIN 256 (Fig 1.1)
i) Power 'ON' lamp. This lights green when power is applied.

§i) Alpha Lock lamp, (on the Alpha Lock Key). This lights red when Alpha
Lock is selected by pressing the key. Pressing the key a second time

releases the Alpha Lock.

§91) Joystick/Printer Connectors. These are to connect joysticks or games
paddles to EINSTEIN 256. You can use types Tlike the Atari or some MSX
models. The joystick ports can also be used as general purpose parallel

ports, or as a Centronics printer port.

j¥) Serial Port, (RS232C/V24). This socket is to connect printers, modems
or other serial devices to your EINSTEIN 256.

¢) Monitor Socket. This socket connects to either a TM11 colour monitor
or TA11 television adaptor. It carries both Sound and Vision signals to the
™11 and TA11 as well as power to EINSTEIN 256. Your EINSTEIN 256 should

mot be connected to any other power source.

(a) General Top View

r_[]
pooonnonoaooooooo0o (@ wer oo o) (JI00000 000 000
k poooooooooooonaoonoD /m. [Fﬁ_? 0]1 0oonaa ooo ﬂl][]J
UJ \asless
YT

(b) Back View

RS 232

S \ , ST
RS232 . JOYSTICK
SOCKET PORTS 1 & 2

/U

(c) Side View

Fig 1.1 Looking at your machine

I D/) A I T I I s O L I T L L L

L % B % B 3 4 e % A 4 A

14

% B A S |

(S B Y Y

(S 8

LI S I S B Y

14

ELECTRICAL SAFETY

Before connecting your Tatung TM11 Display Monitor or Tatung TA1l television
adaptor to the mains supply please read the following:

You will need to fit a suitable plug to the mains lead which is coloured in
accordance with the following code:

BLUE = NEUTRAL ; BROWN = LIVE

As the colours of the flexible mains lead may not correspond with the
markings identifying the terminals of your plug, CONNECT AS FOLLOWS:

Connect the BROWN wire to the plug terminal marked L or coloured RED.
Connect the BLUE wire to the plug terminal marked N or coloured BLACK.

If a 13 Amp plug is fitted make sure it is protected by a 5 amp fuse. If
this fuse needs replacing use only one of the same amp rating and ASTA
approved to BS1362.

If any other type of plug is used protect with a 5 amp fuse, or with a 5 amp
fuse wire in the adaptor or distribution board.

IMPORTANT NOTE: when using a TV receiver or composite video monitor in
conjunction with the TA11 television adaptor refer to the manufacturers
instructions for connecting to the mains. EINSTEIN 256 must not be
connected directly to the mains. It must only be used with its matching
TM11 monitor or TA11 television adaptor.

PRECAUTIONS

It is important that all ventilation slots are clear of any obstruction, so
that a free flow of air is maintained. Do not place the equipment on or
near a source of heat, (even the window on a hot day). Always stand the
equipment on a firm flat surface. Do not stand it upon upholstered surfaces
or soft furnishings as these may obstruct the air flow.

Warning: Do not expose to any rain or moisture. If this happens, remove
the supply plugs, and have the unit checked by your dealer.

Should any unit fail after switching on, switch off at the mains point. If
you are using a TV, plug in the normal aerial lead, and tune to a TV
station. If you still have a problem, talk to your TV repair man. If the
TV works, take your unit to the dealer. Do not operate any faulty unit, it
could cause more damage. If you are in any doubt, talk to your dealer.

Cleaning: The computer, TA1l and monitor cabinets may be periodically
cleaned with a soft, damp cloth. Do not use proprietory cleaning agents
which could damage the surface of the unit. The screen of the monitor should
be cleaned in a like manner.

Connecting Up Your EINSTEIN 256
1. Using a Tatung TM11 Colour Monitor

Ensure that the TM11 is switched off, and connect up the monitor cable
between the socket on the TM11 and the monitor socket on the Einstein 256,
as shown in Fig 1.2. Connect the mains lead of the TM11 to the standard
domestic mains supply.

The TM11 provides all the necessary power for Einstein 256. Switching on the
TM11, also switches on the computer.

Important Note: On no account connect Einstein 256 directly to the mains
supply. :

==

T
l -j TM11 MONITOR
=

i iﬁf ohe-ss

Lt
(@ === NI
@ | o 01] HoamI

REAR OF COMPUTER

Fig 1.2. Using a Tatung TM11 Monitor
Adjusting the TM11

The TM11 has two controls, brightness and volume. Once the TM11 has been
swtiched on, allow a few seconds for the crt to warm up and adjust the
brightness control for an adequate display. For best results, the display
brightness should be kept as low as possible, consistent with ambient
lighting. The volume control should be adjusted for a comfortable Tistening
level.

LA N L U

U

U AR

PEE——
B

2. Using a Television Adaptor, TA11: (See Fig 1.3)

a) With a television receiver: ‘
The sound and vision signals generated by the computer are converted to
television signals, suitable for 'use on a domestic television receiver. In

turn, the TA11 provides the power needed for the computer.

There are three versions of the TA1l, suitable for use in various countries.
These are:-

TA11 240V, PAL system I, suitable for use in United Kingdom (UHF, channel
36). _

TA11A, 240V, PAL system B/G, suitable for Europe (UHF channel 36).
TAT1X 110V, NTSC, suitable for far Eastern countries (VHF channel 13).

Connect the monitor lead between the TA11 and the computer, as shown in
Fig 1.3. Connect the mains plug to the domestic mains supply.

Connect the antenna (aerial) socket of your TV to the TV outlet on the TAll.

Switch on both TA11 and your T.V. Tune the receiver to the appropriate
channel (UHF ch 36 for TA11 and TA11A; or VHF ch 13 for TA11X). Adjust the
tuning until the Einstein 256 logo appears, in colour, on the screen. (You
may need to refer to the operating instructions for your particular

television receiver).

LEAD TO AERIAL
SOCKET ON YOUR

[
r—.'_[: COLOUR T.V. SET MAINS SUPPLY

TA11
TELEVISION ADAPTOR

MONITOR LEAD

.....
Y

T

REAR OF COMPUTER

Fig 1.3 Using a Television Receiver.

b) With a composite video monitor:

The TA11 television adaptor provides a standard composite video output,
suitable for connecting to a monochrome or NTSC colour monitor. The sound
output is available from the STEREQ socket, should your monitor be equipped
with sound. You may prefer to listen to the sound with a pair of stereo
headphones. The headphones should be fitted with a standard 3.5mm miniature
stereo jack plug. Connect up as shown in Fig 1.4.

For details on how to connect and adjust your composite video monitor, refer
to the manufacturers operating instructions.

f COMPOSITE VIDEO INPUT MAINS SUPPLY
| D ON YOUR O MON I ToR
|

MONITOR LEAD

,//
-
e O
E@l @] 0000t

REAR OF COMPUTER

Fig 1.4 Using a Composite Video Monitor

10

imi

L |

L 1) i =8 = t 1} &% | 1 3 i1 1] =y |- 1= |-y =5 |-y -

MAKING A BACKUP, OR SECURITY COPY.

You are advised to make a security copy of the Master Disc. (You will need
a spare, unused, disc).

a) With no disc inserted, connect up your system and switch on. Ensure that
the "Write Protect" tab on the System Master Disc (See Fig.3.1) is set to
the "protected" position.

b) Insert the Master Disc. Press and hold the CTRL key; press and release
the BREAK key; release the CTRL key. The disc light will illuminate
briefly.

The screen should clear and a message appear on the screen:-

*** EINSTEIN 256 ***

| EDOS 1.4X ' (c) 1983/6
0:

c) You may need to intialise a blank disc. The surface of the disc needs to
be prepared to accept data. The process of preparation / initialisation
is known as formatting.

To format your blank disk, insert the disc into drive 0, and then type
FORMAT, and press the ENTER key.

The message “Disc format v1.2X" will appear on the screen.

d) When the "Ensure disc with desired DOS tracks is in drive 0" prompt
appears, check that the Master Disc is in drive 0, and then press the
ENTER key.)

when the prompt "OK....format drive (0-1 or X)" appears, remove the
Master Disc, and insert the Blank Disc. Press key 0 to start the
formatting process.

2] Press ENTER, and the disc will 'whirr' a little. On the screen you
should see a line of numbers (0-39) and under them a line of F's as each
track of the disc is formatted. When the formatting process is complete,
the data is verified, and a line of V's will appear underneath the F's as
each track is verified.

£) when ‘he formatting and verification procedure is complete, you will be
asked if you wish to format another disc. As only one side of a disc is
formatted, you may wish to turn the disc over, and format side B. You
will need to type 'Y' in response to the screen prompt, "More (Y/N)?"

11

g)

h)

i)

J)

When you have formatted both sides of the blank disc, type 'N' in
response to the screen prompt. The system will be returned to the
control of the disc operating system (DOS).

Before proceeding any further, ensure that your Master Disc 1is write
protected. Refer to Chapter 3.

Type BACKUP, and then press the ENTER key. The screen will then display
the message:-

Source Drive (0-1 or X)?

You should type 0, then press the ENTER key. Another message will be
displayed on the screen:-

Destination Drive (0-1 or X)?

Again, you should type 0, followed by pressing the ENTER key. The
computer will respond by displaying your choice, and invites you to
continue the backup procedure, or abandon it i.e.:-

Source drive 0, destination drive 0,

Press ENTER to continue
or X to abandon.

The source drive is where the programs to be transferred are, and the
destination drive is where the programs will be transferred to.

Before pressing the ENTER key, ensure that the original master disc
supplied with your Einstein 256 (the source disc) is inserted into the
drive (drive 0). Then press the ENTER key. The drive 'in use' light
will illuminate, dindicating that the disc is being read. After a short
time the light will go out, and the screen will display the following
message:-

Put In Destination Disc And Press ENTER:

Remove the Master disc, and insert the new disc, and proceed as directed
by the BACKUP utility. As drive 0 is specified for both source and
destination, the master (source) disc and the new (destination) disc will
have to be interchanged several times, as directed by the program. The
reason for this is that the disc can store more data than the memory in
the computer, therefore the programs are transferred in "chunks".

When the backup process is complete, the screen will display:-

Disc Backed up -- OK
Press ENTER to continue
or X to abandon

You should key "X" to return to the disc operating system (DOS). You
will now have a complete duplicate of your master disc.

IMPORTANT NOTE: The Backup utility will destroy any existing data or
programs which may be on the destination disc, so please ensure that the
destination disc does not contain anything you wish to keep!

12

U A AT L | 4 Y

e———

CHAPTER 2
WHAT IS A COMPUTER?

If you have had a computer, or if you know something about them, then skip
this chapter, for it is intended as a short, (and simple), gquide to
introduce you to some jargon.

Fact: Computers cannot of themselves think.
They are, therefore, only a way of doing a lot of tasks in a little time.

Stripped to the bare essentials they usually comprise:-
The CPU (Central Processing Unit)

This is the Integrated Circuit, (IC or chip) that does most of the work. It
is very complex, and has little pieces of memory, called registers,
built-in. It contains the parts to do arithmetic and lTogic. It controls
both information and memory functions. It is in effect, the heart of the
computer, where all the data is processed - the 'brain' if you like.

Memory. Memory is where instructions and/or data is stored, for, during and
after execution. There are two principle types:-

ROM (Read only memory). Instructions/data of a permanent nature are stored
in ROM. As the name implies, you cannot "write" to it. It is "non-volatile",
j.e. the data is retained when the computer is switched off.

RAM (Random Access Memory). Data can be entered (WRITTEN) and retrieved
(READ) from any location in the RAM. Most RAM, at Teast in the home
computer, is "volatile", so data can only be handled whilst the supply is
maintained; when power is lost, so is the data, irretrievably.

Input/Output.

This vital, and often ignored, part of the computer allows commands to be
entered, and data sent to be displayed. It is the means whereby the CPU
communicates with the outside world, other (peripheral) devices etc.
Everything, except memory, is sent through the I/0 Port. A large number of
devices may often be handled through the I/0 Port.

When something is typed in at the keyboard, the "Input Port" takes the
‘offering' and presents it to the CPU. The output "port" takes data from
the CPU and routes it to the chosen destination, which is often the screen,
but may be the disc, or even a "Port" like the RS232C. - See Fig 1.1 (c).

13

Backing Stores.

It would be inconvenient , if not catastrophic, to lose all the Data in RAM
in the event of a loss of power to the computer, so some form of storage
system is needed. In some machines, a compact cassette is used, but
EINSTEIN 256, wuses a 3 inch compact floppy disc, which is protected by a
plastic case. The physical operations of insertion and removal are very
similar to those of a front-loading car cassette player. Data may be
“saved" and "loaded" in exactly the same way, but much quicker, so data may
be stored on the disc temporarily or more permanently. Further details of
discs are given in Chapter 3.

Hardware and Software

The items in a computer that you can pick up are called "Hardware". System
hardware is the computer, orinter, display, external drive, etc. Inside the

computer itself, the various integrated circuits are also called Hardware.

“Software" is a set of instructions which the CPU will execute. Software is
often contained on disc, but some essentials, 1ike the "Einstein" logo seen
on the screen when you switch on, are stored in "Firmware", which is a set
of instructions in ROM.

Peripherals and the System.

The Einstein 256 may be expanded to suit personal needs, requirements or
taste. As can be seen in Fig 0.1, (Introduction), there are a number of
options, dincluding Joysticks, printer, external disc, etc., as well as
future expansion via the VAMP interface. There are input devices
(joysticks for example), and output devices (e.g. a printer or the RS232C
Serial Port).

14

L % A % 4 % 4

L Y 8 B 8 A BN Lt 4

L S S S 8 B 4 S % S % A

14

The Display
The screen of your monitor/tv can display information in two ways:

i) As text (numbers, letters and symbols).
ii) As graphics.

1. When displaying text, the screen is organised into horizontal rows, and
vertical columns, (See Fig 2.1). Einstein 256 can display text in 24 rows
and 32, 40, 64, or 80 columns, according to the display mode. In text, the
display origin (0,0) is at the top left hand of the screen.

Text origin

(0,0) ﬁ

||

24 rows of
characters

[}

32,40,64, or 80 columns of
characters dependant upon
display mode selected

Fig. 2.1 Screen - text modes

2. When displaying graphics, the screen is organised into 256 or 512 pixels
horizontally, and up to 424 pixels vertically. (Note BASIC only supports
192 pixels vertically.) A pixel is the smallest picture element the
computer can generate. The origin for graphics (0,0) is at the bottom left
hand of the screen.

256 or 512 pixels depending
upon graphics mode selected

e _—‘H\\
DISPLAY e ‘L i
AREA '(rszopixelfli)r‘\eBASICl

Graphics origin
(0,0)

Fig. 2.2 Screen - graphics modes
15

COMMUNICATION

Until now, we have not asked the computer to execute any instructions for
us. To do this, we need to communicate with it. The CPU in the computer
only understands data in the form of binary digits, 'l's and '0's. People
communicate in a language, such as English or French. In order to allow
people to communicate effectively with a computer, some means of
"translating" to binary digits (machine code) is necessary.

There are two principal ways, or 'languages' used in computer communications
- low level languages and high level languages.

Low level languages essentially represent the machine code in mnemonic form
(assembly language). A high level language has instructions and commands in
a near English like form, so as to make programming easier. A high level
language will ‘'translate' its commands/instructions which can be
'understood' by the CPU.

The job of the translation can be done in two ways: before the program is
run, or at the same time as it is run. These are known as Compiled or
Interpreted. A compiled language does sometimes run faster, because all the
hard work of translation is already done.

A BASIC Interpreter contains some way of entering the data, editing any
errors and running it. Whilst it is running, the various words in the
listing are examined for being in the correct form, syntax. This process is
repeated for every instruction in the listing, as it is executed.

Here are a few examples:-

HIGH LEVEL LOW LEVEL
BASIC MACHINE CODE
COoBOL ASSEMBLER
FORTRAN

PASCAL

FORTH

Each programming language has slight variations (DIALECTS) according to
requirements for individual machines.

Tatung is no exception, and adheres to a common core of standard (DARTMOUTH)

BASIC. EBASIC includes additions which provide extra facilities for you as a
user of the EINSTEIN 256.

16

| 8 S ¥ S % 8 S 4 A 4 4

8 LI 4 4

Ll

(A

S\

14 Y Y

S I 8

Al

ol

A Note about BASIC

BASIC is an acronym for Beginners All-purpose Symbolic Instruction Code.
BASIC is the most popular Computer language. It s easy to learn, but yet
powerful enough to handle many applications.

It was developed in 1964 at the Dartmouth Naval College in the U.S.A., where
it was used as an introductory language for programmers using a time-shared
computer. These programmers never actually saw the computer, only a
tele-type (Telex) machine. Displays such as EINSTEIN 256 can provide were
only a pipe-dream to most programmers at that time.

With the advent of sophisticated computers, with equally sophisticated
displays and with sound ability, BASIC has been improved and expanded by
several manufacturers. Each computer manufacturer has added to BASIC to
take advantage of the features his machine offers. Thus each
manufacturer has his own version, or dialect, of BASIC and Tatung are no
exception. Tatung/Xtal is an enhanced version of Tatung/Xtal BASIC 4

which makes full use of EINSTEIN 256 advanced features.

Different dialects of BASIC will have different interpreters, because they
may use a different CPU, or have different graphics capabilities, so not all
BASIC's fit on all machines.

SUMMARY OF KEY WORDS

CPU INTERPRETER
RAM DISPLAY
ROM PIXEL

BASIC

Having set up the computer and display as described earlier, the initial
message displayed on the screen is explained below.

THE MESSAGE

a) The title at the top of the screen is the computer's own name followed by
the instructions to load the system disc.

b) The message, TATUNG/XTAL MOS 2.XX indicates that the computer is working
under the control of the Machine Operating System.

c) READY indicates that the computer is waiting for instructions.

d) The > (CHEVRON) sign is a "prompt" that indicates MOS is waiting for an
instruction. When the execution of an instruction has been completed,
the chevron will re-appear as a reminder that the EINSTEIN 256 is waiting

for fresh instructions.

e) The flashing square character adjacent to the chevron is known as the
CURSOR. When we. type in a character the cursor will automatically move
one space to the right, indicating the current position at which we can
expect the next character to appear on the screen when we press a key.
It is also possible to move the cursor independently about the screen by

use of the cursor keys.

17

THE OPERATING SYSTEMS

There are three different systems available with the EINSTEIN 256, these
are:-

1. The MACHINE OPERATING SYSTEM - MOS
2. The DISC OPERATING SYSTEM - DOS
3. High level languages

EBASIC is the high level language supplied with the EINSTEIN 256. Other
languages may be available from your dealer.

Various features exist within these systems, depending upon what is
required.

MOS:

Programmed into EINSTEIN 256's read-only memory (ROM) is a control program
called the machine operating system. The machine operating system is a
machine language program and acts as a link between the various low-level
functions that EINSTEIN 256 performs, such as printing a character to the
screen, fetching a character from the keyboard, or plotting lines.

The machine operating system also supports some utilities which can be
accessed via the keyboard. These utilities allow to examine, and alter the
contents of memory, read from, and write to the disc, perform number base
conversions and so on. Most of the time you will not need to use this
particular feature, but programmers will find it useful to debug programs,
and to write machine ccde programs.

EINSTEIN 256 au.-matically comes up in MOS when switched on without a disc
in the drive. When in DOS or BASIC, typing MOS will return control back to
MOS.

The prompt message displays "Ready" with a chevron below when in MOS, i.e:-

TATUNG/Xtal MOS 2.XX
Ready
>

18

DOS:

The DOS concerns itself with accessing programs and data on the Discs.
There are limited facilities available within this mode but more often it is
used in conjunction with the particular language or program in operation
within the machine. It can be thought of as a file manager.

Inexperienced users need not concern themselves too greatly with this at the
moment as more use can be made of the DOS at a later stage when
familiarisation of the machine is more complete. (More details of DOS are
given in Chapter 5).

The prompt message displays the current drive number and a colon when in
DOS:-

EDOS 1.xx
0:

HIGH LEVEL LANGUAGES:

i) Insert the MASTER DISC into Drive 0, and press CTRL-BREAK followed by
"Enter" (The disc should be pressed firmly home in the same manner that you
would with a front loading cassette tape player).

ii) The indicator light on the disc drive facia will illuminate.

(Pressing CTRL-BREAK causes the Disc Operating- System to be loaded into the
computer from the disc).

The computer should now be operating in DOS and the following heading should
appear on the screen.

%* FINSTEIN 256 *
EDOS V1.4X (c) 1983/6
0:

If this is not the case then check through the "loading" procedure again.

Now type EBAS and then press the ENTER key. This causes BASIC to be loaded
into the computer from the disc.

The computer should now be operating in BASIC and the following heading
should appear on the screen.

EBASIC V4.5X 1983/6
Size 41852
Ready

If this is not the case then check through the 'loading' procedure again.

19

The heading only appears when the language is first loaded and the figure
given after "Size" will vary according to the version of BASIC installed.
The screen format changes by necessity in accordance with the operations in
hand. The heading will disappear at the first change of screen, leaving

only the Ready prompt and cursor to indicate that the computer is working in
BASIC.

SUMMARY
There are three modes of operation:
a) MACHINE OPERATING SYSTEM (MOS)

b) DISC OPERATING SYSTEM (DOS)
c) HIGH LEVEL LANGUAGE

20

e 'y il 3 7 | T Al T B T 1 T I " T T ¥

CHAPTER 3
INTRODUCING DISCS

THE DISC CASSETTE

The disc is accessed by means of the window when loaded in the disc drive
unit. This window has a protective metallic shutter which opens as the
cassette is loaded, thereby exposing that area of the disc to the read/write
head within the drive unit. Both sides of the disc can be used.

"WRITE PROTECT' INDICATORS ACCESS WINDOW

DRIVE HUB

LOCATION HOLES INDEX ACCESS HOLE

PLASTIC CASE

Fig.3.1 The important features of a disc.

NOTE:

When purchasing disc cassettes (often known as compact floppy discs), or
extra disc drives, make sure they are marked with the symbol illustrated in
Fig.3.2.

Fig 3.2 Compatibility Symbol

21

This logo indicates that any disc related materials bearing it are
compatible with each other and with EINSTEIN 256. Beware of any attempt to
supply disc related materials which do not bear this logo, as they may not
function correctly (if at all) when used with your EINSTEIN 256.

CARE OF YOUR DISCS

Rough handling can cause damage to disc cassettes. The following
precautions, DO's and DON'Ts, should be observed at all times.

1...store discs in their boxes if possible, or in a polythene bag, when not

in use.

2...always use identification labels, correctly positioned. Avoid
overlaying an old label with a new one.

DON'T...

l...put discs near magnetic fields and materials which might become
magnetised. Such fields are found in the proximity of TV sets, TV

adaptors and monitors, so never put discs down on top of them, even in
their boxes.

2...expose discs to heat or sunlight. Avoid placing them too near heating

appliances or windows. In particular avoid Teaving them on the rear
parcel shelf of a car.

w

...expose discs to moisture. As well as rain, high humidity can cause
problems if a disc is brought from a cold atmosphere to a warmer one.
If this is impossible, e.g. if the disc is brought into the house on a

cold day, the disc must be allowed to attain the ambient temperature
before use.

E=Y

-..expose discs to excessive dust which might contaminate and cause damage.
Cigarette ash is an obvious example.

5...expose the access area of the disc by opening the "window shutter"
manually.

6...use erasers (rubbers).

22

1 _T i (7 1]

'r‘ ;F’ r,r Irl l'l I'l U J!

Fl

L

|l 0 S 1 TR | A I A I A O A 8 O O A B

WRITE PROTECT TABS

There are two write protect tabs labelled A and B, one for each side of a
disc. When activated they protect the data on the disc from being
overwritten, similar to the way that recordings on cassette tape can be
protected. It allows information to be read from the disc but not written
onto it, thus preventing accidental corruption or deletion of data.

The write protect tabs slide in a small housing at each corner of the
cassette case as illustrated in Fig.3.3(a). If the tab obscures the hole,
the write protect is NOT in operation. To activate the write protect, slide
the red tab (using a small pointer, e.g. pencil) to the opposite end of the
housing Teaving the hole clear.

Another type of tab is illustrated. This is coloured white and slides in the
direction shown. It has the advantage of being able to be operated by a
finger. or a thumb nail.

In either type, the hole in the disc disables the writing ability of the
disc unit thus protecting the disc.

TAB SLIDES
IN THIS DIRECTION

@ |

PROTECTED POSITION UNPROTECTED POSITION

WRITE PROTECT TAB(RED)
SLIDES IN LOCATION

(a) (b)

- Fig 3.3 Alternative Write Protect Tabs

Another type of tab is illustrated in Fig 3.3(b). This is coloured white
and slides in the direction shown. It has the advantage of being able to be
operated by a finger or a thumb nail.

In either type, the hole in the disc disables the writing ability of the
disc unit thus protecting the disc.

23

DISCS AND DATA

When data, (files, programs, or tables » for example), are 'saved' to a
disc, the recording head moves to an appropriate place and leaves at that
place a series of magnetic patterns on the surface of the disc, rather in
the same way as audio signals are left on the tape. These patterns cause
the data to be reproduced in the head when the disc is being read, so the
process is two way.

The Tape storage system suffers from a lack of speed, due to two things.
The effective speed of the tape against the head is slow, as is the transfer
speed of data. In addition, data is stored on the tape sequentially, so you
have to search from end to end to find a particular piece, or file, rather
in the same way as you would look for a favourite track on an LP tape. A
disk based system is much faster each file has a unique address (track X
sector Y), in a similarway as a particular location in RAM, and the
transfer rate is much faster.

Storage Of Data (See figure 3.4)

The disc side is divided into 40 tracks each with 10 sectors. Each sector
holds 512 bytes of user data, plus a little more for identification, which
is used internally. A disc's capacity is 250k - 'UNFORMATTED', but you will
see that there is 190k is free for the storage of your data. The difference
(60k) is taken up by the formatting process, which identifies each track and
sector on the disc, the 'system tracks' which contain the DOS and directory,
which takes up two tracks. In addition the internal identification data
takes up a bit more, so the user is left with about 190k of data space
available,

10 SECTORS PER TRACK

p -\
i — H —
<, ~
&)F'j ~ 512 BYTES OF USER DATA
-

oy

Az
fod %o 3§ O 40 TRACKS
Bk ;|
A & 7/

A X
o

SECTOR

Fig 3.4 Disc Cassette Data Storage
24

LI 8 N

¢ ¥ E1 K¢ &F &0 LI O REORD OB OORY Ol D Al

SUMMARY

Characteristics of Discs
Precautions for use with Discs
WRITE-PROTECT TABS - Use
Storing data on Disc

25

% | BT % S S B S A % B N B S S A S B A

4 U % S T 4 S 8

4

CHAPTER 4

THE KEYBOARD

OVERALL LAYOUT

1
E] BREAK

o M
e

Fig 4.1 The Keyboard

The illustration above shows the keyboard,

typewriter, but with a few extra extra keys.

groups:-

a) Character keys.
b) "User defined" function keys.
c) Ancillary function keys.

27

__ﬂnu@@iﬁéi

which resembles that of a
The keys fall into three

CHARACTER (TYPEWRITER) KEYS

i!- ”__
e W) E))(R) L|(o]
%;:[Eﬁéi] [:] [:] [:] IHI[::] [:] III [EJIIII
* B

Fig. 4.2 Character Keys

This group includes the numbers and letters, symbols and fractions used to
“type-in" information and instructions to the computer. Each key can access
two functions, as shown on the top surface of the key, these being either
upper or lower case; upper case is labelled*. Constant upper case letters
may be obtained by using the "ALPHALOCK" key, but symbols are still selected
by using the "SHIFT" key. The "ALPHALOCK" function is indicated by the

built-in LED indicator; it is cancelled by pressing it a second time. A few
moments practice will soon demonstrate.

* The selected case is accessed by first pressing, and holding, the "SHIFT"
key, followed by the required key and then releasing both,

FUNCTION KEYS.

Fig 4.3 Function Keys - User Defined

The top row of eight keys, (FO to F7), may be re-defined by the user.

Details of reprogramming these keys is described later on in the section on
EBASIC.

28

& B OB OB OB R OO MR R E R R RN

L

LI B

C

ANCILLARY FUNCTION KEYS

RS

i

T

Fig 4.4 Ancillary Function Keys

1. The ENTER key is used to terminate a command, data, or instruction in
order to enter that instruction for processing. It involves a 'Carriage
Return and Line Feed' function, i.e., transfers the cursor to the beginning
of a new line. If an error message is displayed, there is probably a
mistake in the format or syntax. Later chapters will tell you what error
messages exist and what to do with them.

2. The BREAK key halts execution of whatever process is executed, but only
while it is pressed. Halting a BASIC program is accomplished by pressing
"SHIFT and BREAK' together, (SHIFT-BREAK). The program may be re-started by
typing 'CONT' and keying ENTER. All variables are preserved, so you lose
nothing.

3. Cursor Control. These four keys enable the movement of the cursor around
the screen, for editing or games purposes. The cursor is moved in the
direction of the arrows.

4. INS/DEL. This key provides the facility of inserting or deleting

characters on the screen, relative to the cursor. The 'DEL' key is used
‘unshifted'. The INS function is obtained by using DEL and SHIFT keys.

a) To delete a character:-

i) Use the cursor keys to position the cursor one place to the right of
the character to be deleted.

ii) Press the DEL key.

$4i) The character will be deleted, and text to the right will "Close up"
from the right.

s¥) Under some circumstances (e.g. in editing a BASIC listing),

you must terminate the process by pressing the "ENTER" key,
see the section on Editing in BASIC).

29

Example:-

Original Alphabset
Position the cursor Alphabset
Press (DEL) ' Alphabet
b) To insert a character:-
Original Alphaet
Position the cursor Alphaet
Press "SHIFT + DEL" Alpha et
(INS) =
Type the letter "b" Alphabet
c) To change a character:-
Original Alphapet
Position the Cursor Alphapet
Type new letter"b" Alphabet

The character has been "overwritten".
5. CTRL
The control key is used in conjunction with other keys providing various
useful facilities. Like the SHIFT key, it performs no direct function as an
individual key, but creates a series of functions.
i) Press and hold the CTRL key.
ii) Press the desired second key.
iii) Release both.
b E5C
The escape key provides a special abort function which stops listing or
tabulation. Some software uses it to reset to a given state of the program.
7. Scrolling.
When a screen full of text has extra information typed in, the displayed

text seems to vanish at the top of the screen, allowing more text to be
entered at the bottom. This is called "scrolling".

30

'F _F e [& . 1 § A ' & 2] IR B rees 'R B ' 3 B 'R =B v

'y 2l

GRAPHICS

() ()) ()) ()) ()

[=J|oo]eg]eeles]oojpojoajrajps mE|oo|o0|os

H[EIED ga|oalsa|oo|oo|oc|po|xz|en|zs|se !

(&)| pofpajoaloo|oc|se|sejss| o me/ne| e

(e Jooes]og)oojpalsolse|es o e =) W
C) 9&@

The various character keys (numbers, letters, symbols) provide a secondary
function incorporating graphic characters. Each key provides two different
graphic symbols as shown in fig 4.5 (Note that the symbols are not actually
shown on the keys). Each symbol occupies one character space.

Fig 4.5 Graphics Key Allocation

To access the Graphic Characters, press the GRAPH key and hold it down
whilst operating the particular character keys required. Under normal
conditions the Teft-hand character will be accessed. By using the SHIFT key
in conjunction with the GRAPH key the right-hand character will be accessed.

Try a few examples of graphic symbols. It is enjoyable building up patterns
and shapes using the symbols. The only Timitation is the imagination.

The Keyboard Trainer Program

The various character keys (numbers, Tletters, symbols) provide a secondary
function incorporating graphic characters. Each key provides two different
graphic symbols as shown in Fig 4.5. (Note that the symbols are not
actually shown on the keys.) Each symbol occupies one character space.

To access the Graphic Characters, press the GRAPH key and hold it down
whilst you operate the particular character keys required, Under normal
conditions the left hand character will be accessed. By using the SHIFT key
in conjunction with the graph key the right hand character will be accessed.

When the graph key is released the keys return to "text" mode.

31

£ t &l B¢ BV BT O BRE REF O RYT O ORYT LR (EE O RE® BT BN BN O RRE RET RHI

CHAPTER 5
THE OPERATING SYSTEMS

There are three distinct levels of operating in EINSTEIN 256. The CPU and
memory, (ROM and RAM), are at the core, but to access it, the software has
to control the M0OS, DOS or even both.

At the lowest level of control is the M0S, (Machine Operating System),
within which is a small program called a monitor, (or Machine Code Monitor),
which will allow manipulation of memory data and simple disc access.

In the middle is the D0OS, (Disc Operating Systems), which provides access to
discs, as well as a few more functions. It also has a monitor control

program.

At the top, or outer layer, is the program to be run, whether it be a
language or some sort of "applications" software.

MACHINE OPERATING SYSTEM (MOS)

MOS is lowest level of operation with the computer. We shall use MOS from
now on when we wish to refer to the Machine Operating System. It allows
direct access to the memory and various facilities are available for the
manipulation and display of data contained therein.

The method of access to the MOS “"monitor" depends on the current “"state" of
the computer. Access can be made as follows:-

a) From BASIC - Type the command MOS, (followed by ENTER).
b) From DOS (Disc Operating System) - Type the command MOS.

c) From power up, or reset, with a disc in the drive unit the computer will
come up in DOS - therefore type MOS and key ENTER.

d) From power up, or reset, without a disc in the drive unit - the computer
will come up in MOS.

In the EINSTEIN 256's ROM 1is a control program, which forms a link between
the various functions required by the user, such as printing a character to
the screen, getting a character from the keyboard or even plotting lines.
The monitor also allows access to utilities which allow the alteration or
examination of the contents of memory, as well as writing to the disc and
perform number base conversion. This sort of low level access is mostly
used by programmers and enthusiasts. For much of the time, the new user
will not need them, but the software he loads undoubtedly will.

NOTES:-

1. Editing

Normal “Screen" editing is available in MOS, which means that the cursor may
be moved around the screen by the cursor keys. Insertion and Deletion are

as previously described.

33

2. Commands ,

Each command consists of a single letter, (upper or lower case), which in
some instances may be followed by either 1,2,3,0r 4 hexadecimal numbers.
There is one exception: the H command requires a single decimal number
input.

MOS COMMANDS

Each command consists of a single letter (either upper or lower case may be
used) which in some cases is followed by either, 1,2,3, or 4 hexadecimal
numbers. These hexadecimal numbers may contain up to four HEX digits. The
exception is the H command which requires a single decimal number.
ARITHMETIC

Syntax:A xxxx yyyy

Where 'xxxx' and 'yyyy' are given as two hexadecimal numbers.

Purpose: This command calculates the sum, difference, and the necessary
"offset" for a relative jump for the two numbers given.

The results are displayed as follows:-
AAAA BBBB cC
SUM DIFFERENCE OFFSET

In cases where a "relative jump" would not be possible for the two given
values then '--' is displayed.

BAUD RATE

Syntax: B xy wwzz

Purpose: This command sets up the baud rate for the RS232-C Port according
to the values specified by x and y. x is the "Receive rate" and y is the

“Transmit rate" and can be a number in the range 0 to 8 representing baud
rate values as given in the table below.

0 - 75 baud 5 = 1256 baud
1 = 110 baud 6 - 2400 baud
2 - 150 baud 7 - 4800 baud
3 - 300 baud 8 - 9600 baud
4 - 600 baud

If anly one of x or y is specified then both will be set to the same baud
rate,

Any mix of baud rates for x and y is permissible with the following

exception - 75 baud can only be set to receive if 75 baud is also set to
transmit.

34

% LT 8 % A A 4 A X L A

18 [S I S A A 4 B 4 A

LrL

Ll

4

The wwzz is optional but if given it sends the specified values to the USART
as commands to change its mode of operation. This enables such things as
the number of data bits, stop bits, parity, etc., to be set up. ww
represents the "mode instruction" byte and is set first. zz represents the
“command instruction" byte. (reference should be made to the 8251A USART
handbook for further details of these codes). If wwzz is not specified, no
control codes are sent.The following tables show the "mode instruction®
codes and the "command instruction" codes.

Command Instruction Table

EH IR RTS | ER |SBRK| RxE | DTR |TxEN

_ L TRANSMIT ENABLE
1=enable

O=disable

DATA TERMINAL
READY

“high” will force DTR
output to zero

RECEIVE ENABLE
| 1 i
O=disable

SEND BREAK
CHARACTER
1=forces TxD “low™
O=normal operation

ERROR RESET
1=reset error flags
PE OE FE

REQUEST TO SEND
“nigh” will force RTS
output to zero

INTERNAL RESET
“high” returns B251Ato|

Mode Instruction format

+

ENTER HUNT MODE ¥
1=enable search for
Sync Characters

¥ (HAS NO EFFECT
IN ASYNC MODE)

35

Mode Instruction Table

| BAUD RATE FACTOR
o 1] 1
e e o o 1 1

HUMBER OF STOP BITS
(] 1 o 1
d o o 1 1
wvauo | ol | AL, 2
(ONLY AFFECTS Tx3Rx
NEVER REQUIRES MORE
THAN ONE STOP BIT)
Examples:
B3 Sets Rx and Tx rates to 300 baud
B50 Sets Rx rate at 1200 baud, and Tx rate at 75 baud.
B8 CE27 Sets Rx and Tx rates to 9600 baud. Also sets up the 8251A USART as
follows:-
Asynchronous
clocks at 16x baud rate
8 data bits
no parity
2 stop bits

Transmit and Receive enabled
DTR and RTS outputs forced low.

(B8 CE27 is the default setting of the 8251A USART on Power Up)

NOTE: When ww is specified, bits 1 and 0 should be set to '10' to select a
baud rate factor of 16. If a different factor is selected, the baud rate
set by the x and y parameters will not be as specified in the table above.

BREAK

A "break" may be 'patched' into any program by inserting an "FF" code at the
desired location in memory, in place of an op-code.

CcCoPY
Syntax: C xxxx yyyy zzzz

Purpose: This command is used to copy a block of memory which starts at
address 'xxxx' and finishes at address 'yyyy'. The block is copied into a
new position in memory beginning at the address given by 'zzzz'.

36

.LI .L' .L' | S S N % B A Y Y ey (B (B BT &1 B

14

11 B A S 8

DECIMAL
Syntax: D xxxx

Purpose: This command converts a hexadecimal number given in 'xxxx' into a
decimal number in the range O to 65535, and then displays the result on the

next line.
Example:

D 003E will give a result of 62 decimal.
EXECUTE

Syntax: E Xxxx

Purpose: This command will execute a program starting at the current program
counter (PC) value, as given by the Z command, and continuing until the
address given by 'xxxx' is encountered, at which point a break will occur,

program execution is halted and the Z80 register contents will be displayed.
If 'xxxx' is not given, or is given as zero, then no break will occur.

Register Display:
A BC DE HL PC SZ-H-PNC

The registers would be displayed as above with their current contents shown
below them. (see Z command for further details of registers).

FILL

Syntax: F xxxx yyyy zz

"purpose: This command will fill a block of memory starting at the location

given by 'xxxx' and ending at location 'yyyy', with the value given by 5 7 gt
Example:

F OFAO OFFF 23

This will fill the block of memory from location OFAO to OFFF with 23 HEX

(23 being the HEX value which represents the # symbol in the character code
table. The T command could then be used to examine the memory locations

given above).
GOTO

Syntax: G XxXx yyyy

Purpose: This command causes execution to 'go to' the program starting at
address 'xxxx'. If 'yyyy' is given a value then a break will occur at the
location given by 'yyyy' (as in the E command)and the Z80 registers status
will be displayed. If xxxx yyyy are both omitted a GOOOO will be performed

37

Example:

G B0O02 BOFF
This instructs execution to transfer to location B002 and carry out the
routines from there onwards. When Tlocation BOFF is reached a break point

occurs and the Z80 registers will be displayed with their current contents.
HEXADECIMAL

Syntax: H ddddd

Purpose: This command converts a decimal number given by 'ddddd' (in the
range 0 to 65535) to a hexadecimal number and displays the result on the
next line.

Example:

H 246 will give a result of 00F6H

LANGUAGE

Syntax: LN

Purpose: This command selects one of the four available character sets.

N Character Set N Character Set
0 = Einstein (IS0646) 1 = ASCII
2 = German 3 = Spanish

MODIFY
Syntax: M xxxx

Purpose: This command is used to alter an area of memory starting from the
address given by 'xxxx' and the procedure is as follows.

a) Type in the command, followed by the starting address.

b) The address and its contents are displayed on the screen with the cursor
positioned at the first digit of the contents.

c) To modify the contents, type in the new values as a two digit HEX number,
overtyping the existing contents, and press ENTER.

d) The next address and data then appears, again with the cursor positioned
at the first digit of the contents.

e) If no modification is to be made then simply press ENTER so as to examine
the next address, and so on.

f) To EXIT the modify éommand type a full stop (.) at cursor position and
press ENTER.

It is possible to modify the contents of consecutive addresses by typing the
successive bytes on one line. When ENTER is pressed the next unmodified
address is displayed.

38

Example:

G B0O02 BOFF
This instructs execution to transfer to location B002 and carry out the
routines from there onwards. When Tlocation BOFF is reached a break point

occurs and the Z80 registers will be displayed with their current contents.
HEXADECIMAL

Syntax: H ddddd

Purpose: This command converts a decimal number given by 'ddddd' (in the
range 0 to 65535) to a hexadecimal number and displays the result on the
next line.

Example:

H 246 will give a result of 00F6H

LANGUAGE

Syntax: LN

Purpose: This command selects one of the four available character sets.

N Character Set N Character Set
0 = Einstein (IS0646) 1 = ASCII
2 = German 3 = Spanish

MODIFY
Syntax: M xxxx

Purpose: This command is used to alter an area of memory starting from the
address given by 'xxxx' and the procedure is as follows.

a) Type in the command, followed by the starting address.

b) The address and its contents are displayed on the screen with the cursor
positioned at the first digit of the contents.

c) To modify the contents, type in the new values as a two digit HEX number,
overtyping the existing contents, and press ENTER.

d) The next address and data then appears, again with the cursor positioned
at the first digit of the contents.

e) If no modification is to be made then simply press ENTER so as to examine
the next address, and so on.

f) To EXIT the modify éommand type a full stop (.) at cursor position and
press ENTER.

It is possible to modify the contents of consecutive addresses by typing the
successive bytes on one line. When ENTER is pressed the next unmodified
address is displayed.

38

P

To examine a different address when using the modify command it is possible
to delete to the start of a line and type in the new address followed by
ENTER. The contents of that address then appear on the display as usual.

Example:
M 0B2C

This produces a display commencing from the address given (i.e. 0B2C) and
then continues from there as modifications are made.

Example Display:

0B2C 22 (The contents of the addresses
0B2D 41 are given as examples only)
0B2E 3A

0B2F CD

0B30 23

0B31 4F

0832 . F

The contents of address 0B2C to 0B31 have been examined in turn. The cursor
is shown positioned at the first digit of the contents of the location
currently being examined (0B32). After each of the two digits have been
examined and the ENTER key pressed, the next location will appear on the
display.

NOTE: ‘Mistakes in previous lines may be corrected by using the cursor
control keys to transfer back to a particular line and then type in the
correct values over the incorrect values. Press ENTER whilst still on the
corrected 1ine in order to execute the modification and then continue. Use a
full stop, (.), to terminate the routine.

READ

Syntax: R xxxx yyyy sstt d

Purpose: This command fills a block of memory starting at address "xxxx"
and finishing at address "yyyy". The data to be placed in memory is read
from the floppy-disc starting at the sector "ss" on track "tt" of drive "d".

The sector number is "ss" must be in the range 0 to 9, track number "tt"
must be in the range 0 to 27 (hexadecimal) and drive number must be 0 or 1.

Using this facility information may be transferred from any specified area
of the disc into memory, as selected by the user.

39

SCREEN

Syntax: SN

Purpose:

This command selects either text mode 2, graphics mode 2, graphics mode 3

ar graphics mode 6 for the enhanced video display processor (EVDP) in screen
widths of 32.40,64 or 80 columns,

N EDVP mode screen width, columns
0 Graphics mode 2 32

1 Graphics mode 2 40 (default)
2 Text mode 2 80

3 Graphics mode 6 iz

| Graphics mode & 40

5 Graphics mode 6 64

[Graphics mode & 80

TABULATE

syntax: T xxxx yyyy zz

Purpose: This command will tabulate the contents of memory starting from the
address given by ‘xxxx' and ending at address 'yyyy'. If zz is not
specified the memory will be displayed in blocks of 8 bytes, otherwise in
blocks of 2z bytes. The command can be abandoned by pressing the 'ESC' key.

Example:
T 0100 0120

This will produce a display similar to the following (the contents of
locations being given as examples only).

Address Data ASCIT character represented
0100 C3 66 28 C3 79 07 01 3D Cf+ly. .=
o108 BF 39 78 3B C4 38 3D 39 19x;08=9
0110 1A 3D AZ 3D E8 3B DZ 06 -="=h;R.
o118 EA ZB OF OD 80 0D 7A 01 ...z,

Each line of the tabulation begins from the left with a memory address,
This is followed by the current value in that location and then each value
of the next 7 consecutive locations. The right hand end of the line gives
the corresponding characters represented by the wvalues in the same
consecutive sequence. When there is no ASCII character for the hex code
tabulated, a '." (full stop) is displayed.

Looking at the first line of the 11sting, 0100 is the first address and C3
is the value contained therein. Then 66 1s the value in 0101, 2B is the
value in 0102, and so on up to location 0107 which contains the value 3E.
The number of consecutive locations given on one line can be varied by use
of the zz parameter which specifies the actual number to be displayed.

40

A0 00 B 0 ar ok ar n

(R0 AN LU L LF LF EF &F L5 1r i

—
i

NOTE:

1. A1l memory locations (addresses] and contents are given in Hexadecimal.
2, The characters displayed in the right hand section of each line ignore
the most significant bit of the corresponding code. An example of this

appears in the first line of the display given above. C3 is given as the
value representing the character C,

Thus:=
£3-80 = 43 (i.e. ASCII value for character C).

The sector number "ss® must be in the range 0 to 9, track number "tt" must
be 0 to 27 (hexadecimal) and the drive specified must be 0 to 1.

WRITE

Syntax: W oo yyyy sstt d
Purpose: This command will write a block of data to the disc currently in
the drive specified by d. The 'write' will start from track tt, sector ss

and the block will be transferred from memory starting at address 'xxxx' and
ending at address 'yyyy'.

The sector number "ss" must be in the range 0 to 9, track number "tt" must
be 0 to 27 (hexadecimal) and the drive specified must be Q0 or 1.

Thus using this facility data may be transferred to any specified area of a
disc as selected by the user.

COLD START

Syntax: X

Purpose: This command will cause a "cold start" transfer to the current
program from MOS. (Always provided the execution vector has been passed into
MOS by the program loaded, otherwise performs a G 0100)

When using this command to return to BASIC from MOS all programs and
variables are lost and the transfer is as if BASIC had just been loaded.
Hence the term "cold start”.

WARM START

Syntax: ¥

Purpose: This command will cause a "warm start" transfer to the current
program from MO5.,

When using this command to return to BASIC all programs and variables are
preserved. Hence the term "warm start®,

The "warm start" vector is equivalent to a GOI103.

41

DISPLAY REGISTERS

Syntax: 7x

Purpose: This command will display the ZBO register contents according to
the value specified by x as indicated below.

f0 - Displays normal registers.
A,BC,DE,HL,PC and Flags.

I1 - Displays alternate registers.
A, BL, DE , HL, PC and Flags'.
I? - Displays special registers.
1,IX,1Y, 5P and PC.

ZB0 Registers and Flags

MAIN REGISTER SET

A

B
b
H

ALTERNATE REGISTER SET

Accumulator

General Purpose
General Purpose
General Purpose

A Accumulator

[General Purpose

F
B General Purpose C
E
L

H General Purpose

F (flag)
Register

5

L) TR Ll R ESEY ITN S

CIZ T 1T § M

SPECIAL REGISTERS

I

IX - Index Register
I¥Y - Index Register
SP = 5tack Pointer
PC - Program Counte
Display:

The registers are normally displayed as shown in the examples below (the

F
C
E
L

r

Flag Register

General Purpose
General Purpose
General Purpose

Flag Register

General Purpose
General Purpose
General Purpose

Sign Flag

Zero Flag

Mot Used

Half Carry Flag
Mot Used
Parity Flag
Subtract Flag
Carry Flag

Interrupt Register

X
|

contents shown are examples only)

Examples
Mormal Registers

A BC OE
oo 0000 0000

HL PC SZ-H-PNC
gooo - BOOZ2 00010100

42

1T 1 1

'y '

1 T 7 'y B

Y k1

gy

M OB B BN AN AN A YK RN R O BRI RT Rl

Alternate Registers
A BC DE HL PC SZ=H=PNC
00 0000 DOO0 OQOOQ BOOZ 00010100

Special Registers
! IX IY SP PC
FE 0000 0000 FCFF BOO4

NOTE:

a) PC 1s the same for all three displays.

b) The R {Refresh) register is not given since its value is constantly
changing.

c) An automatic Z0 occurs after a break from a program.

FILE NAMING CONYENTIONS

Filenames

The file naming convention is as follows:-

drive: filename . extension

whare:-

drive = is the drive number where the file will be. If omitted, the default

drive 15 selected,

file name - is the title of the file selected by the user and can be up to 8
characters in length.

extension- specifies the type of file and can be up to 3 characters in
length.

Both filename and extensiom may consist of amy combination of ASCII
characters with the following exceptions:-

a) characters with ASCII codes Tess than 32 {(control codes),
b} characters with ASCII codes greater than 127
c) the characters ., , " i

NOTE

It is not always necessary to specify all the parameters. In some cases the
extension can be omitted, or wild cards substituted for any parameters;
e.g. the .COM extension may be omitted when executing command files in DOS,
and the .XBS extension may be omitted when executing BASIC files under
EBASIC. In all cases the drive: parameter may be omitted when files reside
in the current drive,

In order to denote when wild cards can be used, or extensions omitted, we
shall use the following notation when referring to file syntax:

<ufn> unambiguous file name - all parameters must be specified,
<afn> ambiguous file name extensions may be omitted and wild cards used.

43

Example: MOONLAND ,XBS

This specifies the file called MOONLAND, which is a BASIC file {as aenoted
by the extension .XBS).

Common Extensions

The following are commonly used extensions to denote specific types of file.
1. .XB5 - This 15 an EBASIC source file.

2. .ASC - This indicates an ASCII file,

3. .0BJ - This is an object, or machine code file.

4. .COM - This 1s a command file. These files can be loaded and run
automatically under DOS by simply specifying their name without the

extension. The files Toad from 0100H upwards and then execute,

Users may select their own combinations for files and tha following are
given as examples:-

DAT - data file
DOC - document files

-BAK - backup file
-GRA - graphics file
NOTE:

1. The standard extension ,XBS, -ASC, and .0BJ are only distinguished under
BASIC.

2. LASC files can be listed to the screen by use of the DISP command. This
produces a similar effect to LIST for a -XB3 file in BASIC.

3. 0Other extensions are often assigned to files created by a program. In
the same way, a Data Base program may store as .DAT any number of files,

so the index might be stored -IND, or a Word Processor might store a text
as .TXT, .UFT, or DOC.

4. Wild Cards - In some disc applications it 1s necessary to specify more
than one file, for example when specifying the files for a DIRECTORY 1ist.
If one of the characters in a file name is replaced by a ?, then it will
match any character in that position in the file found,

Example:

X1L.ASC - Matches XYZ.ASC,XAZ . ASC,X9Z.ASC etc.
X.0?T - Matches AX.DAT,BX.D7T,4X.DZT,ete

e =i ‘P i FiRi T o] i .

=

| % 4 4 & 4 A A

ol AL

A S S I 8 S 4 % B ¥ e 8 R 4 S 4 B 4 A

il

5. If an * is inserted in place of a character then it will match all the
characters at and after that particular position in the file name or file
type in which it appears.

Example:

* XBS - matches any XBS file,
* % - matches any file, and is the same as ?7777717.777
PROG*.ASC matches PROG].ASC,PROG1Q.ASC,PROGABC,ASC,etc.

Loading Command (.COM) files

To load command file (.COM files) simply key in <afn= 1.e. omit the .LOM
extension.

when a command file has related files, these too can be entered in the D03
command line i.e. the P5G.XBS file can be automatically loaded and run from
DOS at the same time as loading EBASIC. To do this key:

EBAS P5G, then press ENTER

DOS will load and excute EBASIC which will, in turn, Jload and execute
PSG.XBS. In general the format is:

command file space parameter 1 space parameter n ENTER

The number of related files or parameters that can be used depends upon the
particular applications program. For EBASIC, the limit is one .XBS file.

DOS COMMANDS

DIR {Ei[gctotr]
Syntax: DIR afn

Purpose: This command will display the directory of the disc currently in
use, showing the files specified by filename . If filename 1s omitted
then the whole directory will be displayed.

The DIR command will display up to the first 12 lines (24 entries) of a disc
directory on the screen. If the directory is less than 12 lines it will be
displayed in its entirety on the first entry of the command and the system
prompt (drive number and colon) will then appear at the end of the display
1f, however, the directory extends beyond 12 lines then the cursor only will
appear at the end of the initial display, indicating there 1s more to
follow. To examine the remainder of the directory, press any key. This will
cause the next 12 lines of the directory to scroll up onto the display. The
process is repeated until the system prompt (drive number and colon] appears
on the display, indicating the end of the directory.

The total size of the files displayed is given at the bottom of the
directory listing, together with the free space remaining and the total
capacity of the drive.

45

Example: 0:DIR

This will give a display of all the directory for the disc in drive 0,
similar in format to the one given below.

Q:*EBAS LOM : MAIL KBS
0: FORMAT .COM : FKEY .COM
R XYT. LABC :*TESTPROG.ASC

hok Size, 132k Free, 190k Total

This shows that the disc capacity is 190k, the total size of files shown is
56k, and 132k is unused. Note the asterisk on EBAS.COM and test prog.ASC,
indicating Tlocked files which cannot be written to or RENamed.

Example:
0:DIR *.COM
0:*EBAS .COM : FORMAT -COM
0: FKEY .COM

39k size, 132k free, 190k Total

Example:
0:DIR EBAS .COM
D: *EBAS COM
16k 51ze, 162k Free, 190k Total

This last example shows how the size.of any one file may be obtained by just
performing a DIR with a single-file specification. If DIR of a non-existent
file 15 requested, it will be returned as a Ok size preceded by 'No File'.

DISP (Display Files)
Syntax: DISP =<ufn>

Purpose: This command should be used with files which only contain ASCII
?haracters. gt causes the contents of a file to be displayed an the screen
T-E."TI5Es TTY.

Example:
DISP TEXT.ASC
This will display the text of the file named TEXT.ASC on the screen.

MOTE: Using DISP may show some rather surprising results on the screen.
Don't forget that some languages store their data as "tokens", (a sort of
short-hand), so you won't make a lot of sense out of an .XBS file, for
example. Some machine code files contain no printable characters at all, but
the DISP function is very useful for inspecting those which are.

Some discs have a file called "READ.ME" which is often a late addition to
supplied documentation. It is designed to be displayed. If you want a harc
copy and have a printer, use CTRL-R prior to pressing ENTER so as to dump
the displayed file to the printer.

46

b!

10 S 3

| S Y|

ull

| % I Y O Y % A

1%

| I % S 4

1)

DRIVE (Disc Drive)
Syntax: d:

d is specified as a number 0 or 1 depending on the
drive units available within the system.

If the drive specified in d 15 not available on the system a
“No Drive d:"
Mo [0D-1)7" message will be displayed. You should enter the correct
drive number.

Purpose: This command sets up the default disc drive as specified by d for
any subseguent access to a disc.

Example:
13
This selects drive 1 as the default drive. The new default drive number will
appear as the D03 prompt until subseguently changed.
ERASE
Syntax: ERA <=afn=>

Purpose: This Command will erase the file, or a group of files, given by
file-name.

The first file conforming to the given specification will appear on the
screen, together with a "?" symbol. The user must then type in one of the
following single letters:-

Y - "Yes®, erase this file. The word "Erased" will appear on the same
line when that cperation has been completed.

N - "No", do NOT erase this file. The next file to be erased will then be
displayed, if one exists.

A- "All", erase this, and all subsequent files without further
prompting. The word "Erased" is displayed as each file is erased.

F - “Finish", abandon the ERA command, without
erasing any more files (those previously shown as erased will remain
erased).

If the file does not exist, a "No File" error will appear on the screen.

If the fFile 15 a locked file then the following message appears:-

Unlock (Y/N)?

47

The user must then type in one of the following single letters:-

Y - “Yes®, unlock the file and erase. The word "Erased™ will appear on the
same 1ine when that operation has been completed,

N - “No", do not unlock the file. This then abandons the current file, The
next file to be erased will then be displayed, if one exists.

GO
Syntax: G0

Purpose: This command will cause a jump to be made to Tocation 0100 {HEX).
The program at location 100, - memory will then be executed.

NOTE: If, for some reason, you have left a program (e.g. Backup or Copy)
and you want to return to it for another operation, (say formatting, or
back-up of a file), then GO is the right command. If, however, you jumped
out of a language, and you want to keep the variables, then type MDS, and
then ¥, or G103 which will take you to the start of the program, but “warm
started". (This is mainly applicable to a language, 1ike BASIC.)

LOAD
Syntax: LOAD <ufn=

se: This command is used to load a file from the disc into memory. The
file will be loaded starting at memory location 0100 {HEX). The size of the

file, specified as a number of 512 byte BLOCKS, s then displayed on the
sCreen.

Example:
LOAD EBAS.COM
When loading is complete the following would be displayed on the screen:-
N BLOCK(S)
Where N is given as a decimal number

The file can be patched by returning to the "machine operating system" for
modification etc., or run by means of the GO command.

Command Files:
Command files (.COM) will auto-execute by simply entering the <filename=

i.e. they will load and run automatically without requiring further action
from the user.

-y Ll L] i ¥ B

Ll L

B AF Bl OB R BT R B R R R ERD AR e

Example:

To load and execute BASIC from DOS,the BASIC file is EBAS.COM. Simply type
cEAS. and then press ENTER, There is no need to type the file extension

_COM when in DOS.

¢ the command (.COM) file can itself call other files an disc, (i.e. BASIC
can call .XBS files) then these, too, can be entered in the DOS command.

For example, there is a demonstration file on your master disc, which runs
under BASIC. This appears on the directory as DEMO.XES To execute the file

SEMO.XBS, under BASIC directly from D03, you should type:

EBAS DEMD

posS will load and execute BASIC, and in turn BASIC will load and execute the
DEMD program.

NOTE: The file following the command (.COM) file must be of a matching type
{e.g. .XBS for BASIC; .LOG for LOGO)

LOCK.

Syntax: LOCK ufn 5

purpose: This command is used to lock a given file so that it cannot be
rewritten or altered without first being UNLOCKED.

In additfon LOCK may be used to turn the file into a 'SYSTEM' for hidden
file, by including the letter S ofter the command. System files do not
appear in the directory 1ist but may be read or executed as required.

Example:
LOCK MAIL.XB5 - locks the file MAIL.XES

LOCK EBAS.COM S - locks the file EBAS.COM and makes
it into a system file.

NOTE: The lock marker is a small star *. When looking at the 1ist of files
under the DIR command, the list would have the star at the beginning of the

filename:-

e.g:-

*MAIL.XBES ~- would indicate that the file MAIL.XBS
is locked.

& system file is not displayed on the DIR 1listing.

43

UNLOCK

Syntax: UNLOCK «<ufn>

Purpose: This command 15 used to unlock a previously locked file so that it
may be rewritten or altered, If the file was also a system file, that

attribute will automatically be removed by the UNLOCK command and it wil]
then display normally in the directory 1ist.

Example:

UNLOCK MAIL.XBS - unlocks the file MAIL.XBS
(assuming it was previously locked).

NOTE: Unlock will also expose a "System File®.

MOS (Machine Oper~ti.g System)
Syntax: MOS

Purpose: This comnand is used to return to MOS, This is useful if patching
and debugging are required for the currently loaded program/file, The
modifications are mede in MOS, the G command 15 used to return to DOS, and
finally the program/t e may be saved using the SAVE command within DOS.

PSH (Password)

Syntax: PSM passwor |

Where password is n 8 character name selected by the user and may contain
any characters othe~ than control characters. Note: all B characters must
be entered. G

Purpase: This command sets up the password protection facility which can be
used for security purposes to limit the access to any given file to
authorised personnel only,

Once a password has been invoked any files saved can then only be loaded
back under the same password. Any files which exist on the disc either
without a password, or under a different password, cannot be loaded whilst
the current password is in operation.

To change the password use PSW again with a different password, To turn off
the password (or make sure that no password is in force!) use PSW by itself.

NOTES:
. An unprotected file must be read back without a password being in force.

2. The password itself is not stored anywhere, therefore the user must know
it or record it elsewhere.

50

- @ e e e R R OROBRYORY ORM R R R R R AT ORI

3. There is no indication given in the directory that a file has been

protected; the file can apparently be read, but appears as complete
rubbish.

. The directory itself 1is unaffected by the password so that it is

perfectly acceptable to mix unprotected files and files saved under
various passwords stored on the same drive (as long as you know which are

which!).
Example:

PSW IXZ247YT
SAVE 20 MAIL.XBS

Having saved the file MAIL.XBS under the password IXZ247YT it can only be
read or loaded back if that password is in force. Likewise other files not

saved under this password cannot be read or loaded while it is in force.
REN (Rename)
Syntax: REN old <ufn> T0 new <ufn>

: This command 15 used to rename an existing file, giving it a

different name or extension, or both.
Example - assume that HATS is an existing BASIC file.
REN HATS.XBS TO BUTS.XBS
This will rename the existing BASIC file HATS giving it the new name BUTS.

Example:
REN HATS,XBS TO HATS.BAK

This will rename the extension of the file HATS from .XBS (BASIC) to .BAK

(say backup file)
I[f «filename> {5 a locked file then the following message appears:-

File Lock, d
Unlock (Y/N)?

The user must then type in the following single letters:-

Y - "Yes", unlock the file and rename.

N - "NO", do not unlock the file. (This then abandons the REN command,

without renaming the file).

51

SAVE

Syntax: SAVE N ufn

Where N = BLOCK size of file

Purpose: This command is used to save the file in memory, on to the disc.
Example

Assume that a machine code game rogram exists in memory, starting at 100H.
It occupies 2 BLOCKS. (1 k bytes?

You wish to save the program onto disc, and call it "GAME". Assuming it is
a command file, the extension will be .COM. To save such a file, type:-

SAVE 2 GAME.COM
NOTE: See also LOAD.

DOS UTILITIES

There are five utilities which allow the user to prepare discs and transfer
files. The utilities fall into two categories; resident and disc based,

RESIDENT UTILITIES

There are two utilities which will allow the user to prepare discs
and transfer files. These are stored in ROM, and are available for use
whenever Einstein 256 is in DOS,

a) BACKUP
This utility transfers all the data on all the tracks to a new disc.
This process will include erased files as there is ng re-grganisation
of the data. The disc must first be formatted,

b} COPY .
This versatile utility will copy files to any logical device or vice
versa, on a file-by-file basis, and will ignore erased files, Files are
transferred from one logical or peripheral device to another, Note that
not all files will copy, as various methods are employed to combat
piracy of software etc.

To call these utilities, start from D05 and follow the instructions on each
utility.

NOTE: Although Einstein 256 may be used with earlier versions of Tatung/Xtal
DOS, 1n order to use the resident utilities, you should use the EDOS version
3 supplied with Einstein 256.

Should you wish to use discs programmed for the Einstein computer, you are
advised to use the DDSCOPY program to transfer the Einstein 256 DOS to your
existing Einstein disc. 62

woTE: HNot all discs need DOS, many games don't for example. In general, it
«i11 be unwise to transfer D05 to discs which do not display a DOS sign-on

message when CTRL-BREAK 1s pressed.

a) BACKUP

~wo disc drives must be declared when using BACKUP. The source drive, which
~omtains the disc to be duplicated, and the destination drive, which
contains the disc which will receive the copy. When Einstein 256 15 used
without extra disc drives, both the source and destination drives will be
the same, drive 0, so the source and destination discs will need to be
interchanged during the backup procedure, The program prompts the user to

do this.

Typing BACKUP selects the backup utility. (There is no need to use your
Master Disc, as with other computers, as the backup program is built into

the computer itself).
The screen will display the following message:-
BACKUP V1.XX
Source Drive(0-1 or X)?
You should now type in the drive number which contains the original (source)

disc, which is to be duplicated, This will usually be drive D. If you type
¥ in response to the question, the program will return control to the disc

operating system.
when the source drive number has been entered, you will be asked to specify
the destination drive number, For most Einstein 766 ysers, this will be the
came as the source drive. The screen will display the message

Destination Drive (0-1 or X)7
You should now key in the chosen drive number.
The screen will now display:-

Source drive 0, Destination drive 0,

Press ENTER to continue
or "X" to abandon.

The program will prompt the user as to what to do, and when the duplication
process is completed, the screen will display:-
Disc Backed up - - 0K

press ENTER to continue
or "X" to abandon.

Should you wish to duplicate another disc, press ENTER, and the process will
se repeated, otherwise press "X" to return to DOS.

53

NOTE: The backup program copies the whole side of a disc, including the
first two tracks, which contain the disc operating system. BACKUP
overwrites all the data that may exist on the destination disc with that
which is on the source disc, including "blank" areas of the disc.

Should the destination disc contain any wanted programs, or data, then these
will be destroyed during the backup procedure, so take care!

b) CopY

This 1s a general-purpose file-transfer program operating from within the
disc operating system and provides facilities for the transfer of data
between peripheral devices. The use of COPY will normally involve:-

1. Copying of files from disc to disc using a single drive.
2. Copying of files from disc to disc, using two drives.

3. Copying of files between peripheral devices connected to the computer,

Copying Files:

The facility can be used to copy individual files from one disc to another,
or multiple files can be copied one after the other. During the copying
process the file name may be changed if so desired.

1. Type COPY=input-afn> TO <output-afnmand press ENTER (Where <input-afn=>
and eoutput-afn= include the respective drive numbers e.g9. 0:EBAS.COM to
1:EBAS.COM)

In this form a single file will be copied from one disc to another in the
drives specified and the command then terminates. When a drive is not
specified the current default drive number is assumed.

NOTE: If =input-afn> and <output-afns> are identical (i.e. same name and same
drive number) a prompt is displayed on the screen so the user may swap the
discs when using a single drive for copying. If the names of the files are
different, then it is possible to make a copy of a file on the same, or
different disc under the new name.

Rd

- - - LL L] -y l— -y L L - - - L4 L] i L1]

Examples:

COPY 0:0LD.ABC TQ D:

This will copy OLD.ABC from the source disc, and display the message.
Insert Destination Disk

When you press ENTER, the file will be copied onto the new [destination)
disc with no change of name, :

COPY O:0LD.ABC TO 1:NEW.XYZ

This copies the file OLD.ABC from drive 0 to drive 1 under the new name
NEW.XTZ,

COPY 0:0LD.ABC TO 1:

This copies the file OLD.ABC from drive 0 to drive 1 under the same name.

COPY OLD.ABC TO 1:NEW,XYZ

This copies the file OLD.ABC from the current default drive to drive 1 under
the new name NEW.XYZ.

COPY 1:*.XBS TO O:
This copies all .XBS files from drive 1 to drive 0.
2. Type COPY and press ENTER

In this form the command is used by itself and a "*" prompt appears on the
screen after ENTER has been keyed. The input-file TO output-file
statement (in any of the forms given above) is then typed in following the
= nrompt and ENTER is keyed. The copying process takes place and the "*®
appears on the next line for another entry.

In this way a series of files may be copied one at a time under the single
command .

To terminate COPY simply key ENTER immediately following the "*" prompt.
COPY may be terminated by CTRL-C;

Copying Using Multiple File Specifications:

Multiple file specifications can be used with COPY and several files may
then be copied at one go (even an entire disc)., In this instance each file
name is displayed on the screen followed by a question-mark prompt, before
seing copied. To continue the user must type a single letter response as
follows:-

Yes, copy this file.

No, do not copy this file, go to the next file,

All, copy this and all other files without further prompting.
Finish, terminate the COPY command.

ail B B

55

Each file successfully copied displays the word "copied" to the right of the
name an completion. The following shows an example of the type of display
to be expected when using multiple file specifications:

0:COPY *.XBS TO 1:
CHESS .XBS?Y copied
MUsIC L XBSTN

CIRCLES .XBS?Y copied
ELLIPSES,.XB5TA copied
HANGMAN .XBS copied
0:

On a one drive system:-
COPY O:*.XBS TO O:

Would copy all .XBS files and give prompts to swap discs.

Copy Using Peripherals/Devices:

The COPY utility may be used in conjunction with peripheral devices in
place of file names as shown in the format below.

Type COPY <Input-devices> TO <Qutput-device=and press ENTER.

COPY can also be used in combination with files and devices as shown below,
Type COPY <Input-device> TO <=Qutput-afn=and press ENTER.

Type COPY <Input-afn> TO «Qutput-file=and press ENTER.

The peripheral device names which are allowed in the COPY command are as
follows:-

Logical Devices -

CON: console, input or output

AUX: auxiliary, input or output

L5T: 1ist, output only. An error message will result if LST: is used as
an input device.

Physical Devices -

¥DoU: VDU, output only

KBD: keyboard, input only

SRL: serial RS232, input or output
LPT: parallel line printer, output only.

56

af &1 &1 &I &T

14 S % S Y

ull

|1 4

Ll

4B 4 ¥ % B 4 4 4 A e U

Examples:
COPY CON: TO L5T:
This copies data input at the keyboard to the printer.

COPY SRL: TO 0:DAT.XBS

This copies the input from the RS232 to the disc in drive O under the
name DAT.XBS

Options:

In addition to specifying the input and gutput within the COPY command, the
user may also give a list of optional parameters. The parameter 1ist is
used in the output specification only, immediately following the particular
File or device it relates to, and is contained within chevrons {). Some
of the parameters may be followed by an optional decimal number "n", while
others may reguire a string "s® terminated by a ctr1-Z (shown as I on the

screen).
Parameters may be selected from the following list:

Dn - Delete any characters extending beyond "n" in a given line. When
copying text files, COPY counts the number of characters copled after

a carriage-return (i.e. the length of a line of text}. Upon receipt
of the nth character in the line, COPY will ignore all characters
until another carriage-return 1is received. This feature is useful
when dumping text files to narrow printers, and when only a few lines
are longer than the printer width.

E - Echo all copied characters to the console device (i.e. the screen)

F - lgnore any form-feed/clear-screen characters (OCH) received

L - Translate any upper-case (A to Z) characters to lower-case.

N - Add a line number followed by a ":" ta each line of a text file

transferred, starting at 1 and incrementing by 1. Leading zeroes are
suppressed unless NZ 1is given, in which case leading zeros are
included, together with a "TAB" character (09K} following the number.

0 - Object code transfer; Treat any end-of-file [EOF) characters as if
they were normal received characters. This only applies to devices-
the EOF code would normally be the only way to indicate termination
of a transfer from a peripheral device. With this option, however,
object code may be received from a device, and termination effected

by pressing CTRL-S on the keyboard.

Pn - Include form-feed characters (OCH) at every n lines, with one at the
start., If n is excluded or set to 1, @ default value of &0 will be
assumed. If the F parameter is also used, the old form-feeds are
removed and new ones added at the appropriate places.

gs Z - "Quit" - Terminate co ying after the string s has been received. The
: : = CEP LR : g
string 5 will be included in the copied data.

57

R - Read system files - System files would normally be ignored on file
copying, but will be included if this parameter is given (see -
LOCK). The R parameter is only valid when using wild cards and

should not be used when specifying individual files,
5s Z - Ignore all input until string s is received, then start copying. The
string s will be included in the copied data. The () and S parameters
may be used to "abstract" portions from a file. MNote the use of the
Z [CTRL-Z) code as the delimiter in both cases.

Tn - Expand "TAB" characters (09H) with spaces to every nth column during
the copy. (Normally “TAB" characters would be transferred as
received, so for example, a printer could be set up with its own tab
points rather than expanding with spaces).

u - Translate any lower-case (a to z) characters into upper-case.

¥ = Verify that files have been copied correctly, by re-reading after the
write operation. (This only applies if the output is to a file).

W - Write over "locked" files without prompting the user. MNormally, COPY
will prompt the user before attempting to over-write a file that has
been "locked".

L - Teros the parity bit (bit 7) of each character received.
Examples:
COPY XMPL.ASM TO SILLY.LIE SSUB1: QsJP LABL? Z

This copies from the file XMPL.ASM to the file SILLY.LIE on the same

(default) drive, the section starting with string "SUB1:® up to the string
"JP "LABLZ"

COPY TEST.ASC TO LST: NTSU

This copies the file TEST.ASC on drive D to the current “list" device, with
each line numbered, tabs expanded with spaces to eyery 8th column, and
lower-case letters converted to upper-case,

COPY * %70 iTy 0y

This copies all files from the current default drive onto drive 1, with
verification of all files after copying. The ¥V can also appear on the
“input® side, with the same effect,

DISC BASED UTILITIES

There are four DOS utilities which are on the master disc, these are:-

a) FORMAT.COM

b) FKEYS.COM

c) DOSCOPY.COM

d) TAPE.COM

58

T 11 i | i [& i Y i [3 = i e [l 2N E ry [X] Wi i i B i i T] 5 |

i

These ytilities are used to initialise blank discs, to set up function keys,
to copy system (DO5) tracks from one disc to another and to read cassette

tapes respectively.

a) FORMAT

Insert backup master disc, (if you have not made a backup, see Chapter 1),
From DOS, type FORMAT, and press "ENTER"

You will be asked to insert a disc with the required system tracks. You are
strongly advised to ensure that the ‘Write Protect' tab or the master disc
is in the 'Protect' pesition (refer to Chapter 3) before going further.

You will now see another message:-

OK -- Format Drive (0-1 or X)?
Now remove the reference (master) disc and insert the disc to be formatted,
Select 0 oar 1 (0 is the internal drive), and press ENTER.

During the process of formatting the "track numbers" are presented on the
screen as below

0 1 2 3
0123456789012345678901234567890123456789

(1.e. 40 tracks in four groups of 10)
As each track is formatted in turn a letter F (for format) will appear below
the track number.

0 1 2 3
0123456789012345678901234567890123456789
FF

When every track has been formatted, each one will then be verified and
again a letter ¥ (for verify) will appear beiow each letter F on the screen
in turn as verification takes place.

0 1 2 3

0123456789012345678901234567890123456789
FF
Yy Y Y Y Y VY Y VY VY VY Y YV Y VY Y YT Y Y Y

When formatting and wverification are complete the following message will
appear on the screen.

Disc Formatted and Yerified -- OK
Press ENTER to continue
or 'X' to exit

At this stage the destination disc 1is formatted. The user may format
another side, or another disc or return to DOS.

Lk

NOTE: If you get failure of the format process, try again! I you still
have a failure, you may have a faulty disc. Try formatting a different
aisc.,

b) FKEY

The purpose of this utility is to allow users to program the function keys,
without having to load EBASIC. The user can either program the keys with
pre-defined functions, or program the keys with their own data. Up to 128
bytes of storage is available for the function keys. This can all be
allocated to a single key, or shared between all 16.

Non printable characters, such as ENTER, or contral codes can be entered by
pressing the GRAPH key with the ENTER ar CTRL-code keys.

Insert the (backup) master disc.
From DOS, type FKEY, and press "ENTER®
The screen will display the function key menu:-
FUNCTION KEY UTILITY ¥1.X
1. Display function keys
2. Program function keys
3. Set standard defaults

4. Return to DOS
select option.....

The program is self prompting, and the user is guided through the program by
a series of prompts.

When programming the function keys (option 2), the string of new data is
terminated by pressing "ENTER". Existing data for a particular key may be
retained by pressing the "ENTER" key without entering any data. The existing
key data will then be copied into the "New Data:-" column.

c) DOSCOPY

The purpose of this utility is to allow you to easily transfer DOS tracks
from one disc to another, This is particularly useful when using discs
which contain programs written for the original Einstein (TCO1) computer,
Einstein 256 allows you to run programs written for Einstein, but the DOS is
slightly different, in that Einstein has its BACKUP and COPY programs on
disc, whilst Einstein 256 has them in ROM.

Because of this, Einstein's DOS 1.31 won't allow you to access the ROM based
utilities. However, you can transfer Einstein 256's DOS 1.4% to your
Einstein disc with DOSCOPY. When using "Einstein Discs", we strongly
recommend that you do this! Proceed as follows:

Insert the master (backup disc).

From D05, type DOSCOPY and press "ENTER"

&0

(% S % BN S DT % B % % B % B % S Y B S D % DY LT Y N N S % R Y R Y

Al

The screen will then display the message:-
DOSCOPYVT. XX
Source Drive (0-1 or X)?

You should then type in the number of the drive where your master disc will
be, usually drive 0, and press ENTER. DOSCOPY will then ask you to specify
the destinatidn drive. You should then type in the number of the drive
where the disc onto which the DOS is to be copied will be, usually drive D.
Press the ENTER key. The disc "in use" lamp will Tight briefly, and DOSCOPY
will then ask you to "put in DESTIMATION disc, and press enter". On
pressing ENTER, the DOS will be copied onto the disc.

d} TAPE.COM

The purpose of this utility is to allow the user to read program, or data
cassette tapes, and load them into RAM. By using the SAVE command in DO3,
the program/data can be transferred to disc.

Loading Tape Based Programs/Data

Insert the cassette into the cassette recorder, and ensure that the tape is
at the beginning. Connect your tape recorder and (refer to the instructions
supplied with the recorder) to the CASSETTE socket on the rear of Einstein
266. You should use a stereo lead, fitted with 3.5wm short reach stereo
jacks, even when using a mono recorder. Set the playback volume, initially,
to half-way.

Insert your Master Disc and from DOS type TAPE, and press ENTER. After a
short time, the screen will display the following message:-

CASSETTE TAPE READ PROGRAM V1.X (c) 1986

START CASSETTE AND PRESS ENTER
Press PLAY on your recorder and then press the ENTER key on the computer.
If the tape loading is successful, the screen will flash the message
LOADING. If after about 30 seconds the LOADING message does not appear, it
probably means that the playback volume setting is incorrect. Start again!

To exit the TAPE program, press the BREAK key. Restart the program by
typing TAPE, and press ENTER.

B1

Rewind your tape, and repeat the above procedure with a different volume

setting. (Hint, start at, say } volume setting, and gradually increase at
each try).

When the tape has been successfully loaded, the message

PROGRAM LOADED: X BLOCKS

will be displayed. To save the program on disc, type SAVE X
<filename.extension= , and then press ENTER. The X after SAVE is the number
of blocks shown by the TAPE program. The <filenam.ext> should be exactly the

same as that shown in the instructions that come with the program on
cassette.

NOTE: Only use tape based programs intended for use with Einstein 256.
Programs for other machines will not work,

6

o [

'F T T T [T N1 o [—

CHAPTER &
INTRODUCING EBASIC

tinstein 256 differs from most low cost computers in that it does not have
SASIC resident within the system. This is possible since your Einstein 256
has a built-in disc drive, and BASIC can be loaded in a few seconds. Such a
technique would take many minutes on a tape based system. This approach
makes your Einstein 256 much more flexible whem using other languages or
other versions of BASIC.

The language used on Einstein 256 15 an enhanced wversion of the popular
Tatung/Xtal BASIC 4, wused on the Einstein computer. It is known as EBASIC,
and you will find this as EBAS.COM on the master disc supplied with the
computer.

In order to use EBASIC, it must first be loaded into the computer, The
examples in the tutorial which follows assume that EBASIC is already loaded.
To Toad EBASIC, from your backup master disc, follow the procedure outlined
balow: -

i} Insert the master disc. (You haven't forgotten to make a backup, have
you? If so, refer to Chapter 1.)

ii) Switch on.

iii) Wait for the screen to display:

lrf_ *+* Einstein 256 ++* \

| EDOS 3.X (c) 1983/6 |
i 0:

iv] Type EBAS, then press the ENTER key.

wl When BASIC is loaded, the screen will display:

(KHF- *** Finstein 256 % -qﬁhw

EBASIC 4.X {c) 1983/6
Size 41852
Ready

S83IC or other programs can only be stored in memory as long as the computer
remains powered.

[¥ you wish to store them on a more permanent basis, they must be stored on

2fsc. In EBASIC, this is accomplished by using the SAVE command, explained
owver leaf,

63

suppose you wish to SAVE a program called EXAMPLE.

1. Load BASIC and key in your program.

2. Ensure that the write protect tabs are in the "write" position.

3. Type SAVE "EXAMPLE" then press ENTER (The "" marks are important).

4. The activity lamp on the disc will briefly illuminate, indicating that
your program is being saved.

5. When the “"Ready" prompt appears, key DIR (directory) then "ENTER" and you
will see that your program has been entered in the directory as
"EXAMPLE".XB5. The .XBS indicates that your program is a BASIC file.

In general saving BASIC programs takes the general form:-

SAVE " filename " "ENTER"

MOTE :

i) The program name can be up to 8 characters in length, and is devised by
the user. The program name can be any combination of ASCII characters,
except those greater than 127, and *:; .,"=

ii) Further details of other facilities available with the SAVE command are
given in a later chapter.

iii) Any blank disc must be FORMATTED before it can be used to store data
(i.e., save programs).

Loading BASIC programs

1. To load a BASIC program from disc into memory, without executing it,
type:-

LOAD " filename " “ENTER"

e.g. LOAD “EXAMPLE™ "ENTER"

2. To load, and execute a BASIC program from disc, type:-
RUN ® filename " ENTER

If the computer has been switched off or re-set since loading BASIC then it
will be necessary to re-load it as before.

THE LANGUAGE

BASIC consists of a series of COMMANDS and STATEMENTS. The commands/
statements are "English Like" words which represent specific functions.
These are known as KEY, or RESERVED, words.

The first principle to appreciate is that BASIC operates in two quite
separate MODES, these being known as IMMEDIATE MODE and DEFERRED MODE.

L BsIc

IMMEDIATE MODE DEFERRED MODE
Instructions in Instructions in
the form of the form of
COMMANDS COMMAMNDS and STATEMENTS

dutomatic execution
64

- - L L - |- |- - - L - - - 1 L [} Ll b ram—s T

ITMMEDIATE MODE

tamediate mode (sometimes known as Command or Direct mode} is such that the
computer executes commands DIRECTLY they are entered; in other words an
immediate reaction to the instructions given.

The following example {illustrates a direct mode operation and uses the
computer Tike a calculator.

Example - type in the following exactly as shown:
PRINT 7*9
Now press the ENTER key

The * ig used as a multiplication sign and the result should immediately
appear on the screen, on the next line of text below, as 63.

NOTE: Pressing the ENTER key informs the computer that you have finished
typing, and the instruction is ready for execution. The computer then acts

accordingly.

IMPORTART
You are advised to try the "keyboard trainer" program (see Chapter 4) before

typing in a program. You will then be more familiar with the keys and their
functions and effects.

Care must be taken to ensure all the example exercises are typed in as
printed. Any slight mistake or deviation from the given format may result
in the computer displaying an error message, or a different resylt, | ~If &
mistake occurs check that the example has been typed correctly; a
punctuation mark, character, Or space put of position or context may cause a
deviation from the required result.

1f a mistake is made, use the "cursor control® and INS/DEL keys to correct,
as shown before (i.e. edit the mistake).

There are various error messages given by the computer to the user and more
information concerning them is given later.

Immediate Mode Examples (Calculating)

wormal calculating operations can be conducted using the following
mathematical and relational operators:

MATHEMATICAL RELATIONAL

{) Parenthesis

-

Raise to power

Descending (exponentiation)
order of * Multiply = Equal to
precedenced !/ Divide

+ Add

- Subtract

b5

The mathematical operators are listed in order of precedence for multiple
operator calculations. Further details of OPERATORS are given in a later
chapter.

Type the following examples EXACTLY as printed and press the ENTER key at
the end of each one.

Ex.7] PRINT 8*7 The result should be 56
Ex, 2 PRINT 9/3 The result should be 3
Ex., '3 PRINT 744-2 The result should be 9
Ex. 4 PRINT 33-4*g

The order of precedence is:

i] 4% = 24 (multiplication first)
i1} 33-24 (subtraction next)
“111) Answer = 9 (result)

Ex. 5 PRINT (6+8)-6/2 ENTER

The order of precedence here will be:

i} (648) = 14 (brackets first)
ii) 622 = 3 {division next)
i1i) 14-3 {then subtract)

iv]) Answer = 11 (result)

Before continuing, type CLS and then key ENTER. This is a command used 1in
BASIC to clear the screen and HOME the cursor, (The abbreviation CLS ENTER
is adopted to represent this process in the following text),

DEFERRED MODE

Deferred mode is such that dnstructions in the form of numbered lines
containing commands are typed in but no action is taken on them until the
RUN, CHAIN or GOTO commands are entered. Instructions with related line
numbers are known as STATEMENTS and are then executed automatically when the
RUN command is entered. A Tist of numbered statements [(instructions) in
sequence is known as a program. Try the following program. First type NEW,
then press ENTER, to clear out old programs.

Example
10 PRINT 8+7
20 PRINT 5-4
LINE NUMBERS 30 PRINT 6%*3
40 END

Type in the above program, exactly as shown. After each line, press the
ENTER key.

You will observe that the computer does not act upon these instructions
and therefore no results appear.

Type in LIST and press ENTER. This command 1ists the 1nstructions stored
n memory on the display.

Now type in RUN, followed by ENTER to execute the program.
B

The computer now automatically executes the instructions given and
produces the three results of 15, 1, 18, at the beginning of consecutive
1ines.
If you have loaded, or RUN a BASIC program previously, clear out the old
program by typing NEW, then press ENTER, before typing the example,

To summarise:-

al IMMEDIATE MODE is executed immediately after ENTER {manual execution)

b) DEFERRED MODE allows for automatic execution of a sequence of
instructions known as a PROGRAM which is activated by RUN.

c) Editing and corrections are done in Immediate Mode.

GRAPHICS

Here we illustrate some of the graphics capabilities other than the "key"
based graphics characters. Type each line followed by the ENTER key. Before
you start, clear the screen by typing CLS, followed by ENTER.

First type RST ENTER.

Example 1 DRAM 50,50 TO 150,50,

Example 2 DRAW 150,50 TO 75,100,2

Example 3 DRAW 75,100 TO 50,50,2

This should now have produced a triangle on the screen display with two
sides dotted. Each pair of numbers represents the co-ordinate of individual
pixels {points) on the screen.

Clear the screen using CLS ENTER

Example 4 ELLIPSE 175,100,65 (for 525 line ELLIPSE 175,100,65,1.167)

This should have drawn a circle on the screen {a circle is a special case of
an ellipse).

Example 5 Now clear the screen and try:-
POLY 7, 175, 100, 50
(For 525 line standard POLY 7,175,100,50,1.167)

This should put a seven sided polygon at a point 175,100 with a radius of 30
pixels. See also “POLY" in the reserved words definitions in Chapter 12.

NOTE: For 625 lines the commands should be typea in as shown. When using
£25 1ines, NTSC standard, as in Eastern countries and America, the ELLIPSE
and POLY commands should be keyed in as shown in brackets in order to obtain
a reqular figure. If this is not done, an ellipse, or irregular polygon
will result. - See ELLIPSE and POLY commands for further details.

&7

COLODUR

An image has three properties:-

1. Hue
2. Saturation
3. Luminance

1. Hue is the actual colour itself red, green, blue etc.

1.1 There are 512 colour options available in your Einstein 256, Colour is
selected from a pallette of 16 colours. (Except for the high resolution
graphics mode) when 256 colours are available for each pixel. Each
colour in the pallette is allocated a code from 0 to 16.The colours
available at switch on are shown in table 1 .)

2. Saturation is the amount of colour of a particular hue e.g. red and
pink may have the same hue, but will have different saturation.

3. Luminance is the brightness of the image,

A colour monitor, or colour TV responds to all 3 parameters. A monochrome
monitor, or monochrome TV (a green, or amber screen monitor 1s a monochrome
device} responds only to the brightness of the image.

It is possible for two different colours to have the same brightness values.
Two such colours may be easily distinguished on a colour display, but will
be completely indistinguishable on a monochrome display.

The colours should be chosen to give the best luminance contrast. 1.e.
choose colours which have high Tuminance values to contrast those with 1ow
ones.

The following BASIC program will illustrate the point. Just key in the
program and run it.

5 REM COLOUR BARS
10 SCREEN 1
20 BCOL1
30 TCOL6
40 GOSUB2Z0
50 TCOL12,0
60 GOSUB220
70 TCOLS,1
80 GOSUBZ20
90 TCOLY,0

100 GOSUBZ20
110 TCOL3
120 GOSUBZ20
130 TCOLS,1
140 GOSUB2Z0
150 TCOLS
160 GOSUB220
170 TCOL13
180 GOSUB220
190 TCOL15,1
200 GOSUBZ20
210 END
PRINT MULS(CHR$(&FF),40);
230 RETURN

68

-y

The BCOL command is used to change the Backdrop COLour on the screen
sepending on the colour code number specified from the fallowing table.

TABLE 1 - Default Colour Pallette
0 - Transparent 8 - Medium Red
1 - Black g - Light Red
2 - Medium Green 10 - Dark Yellow
3 - Light Green 11 = Light Yellow
4 - Dark Blue 12 - Dark Green
5 = Light Blue 13 - Magenta
& - Dark Red 14 - Grey
7 = Cyan 15 - White

Type in the following examples using the ENTER key after each one.

the effect an the screen.

BCOL 3
BCOL 6
BCOL 10
BCOL 13
BCOL 4

Observe

Each example changes the colour of the screen 1in accordance with the colour
code number specified, Example 5 returns to the original background colour.

Mow clear the screen again (CLS:ENTER).

The TCOL command allows the colour of characters and background colour of
the character cells to be specified independently of the screen backdrop

colour.

Type in the following examples, keying ENTER after each line.

Example 1 TCOL 1,15 displays
background

Example 2 TCOL 11,6 displays
background

Example 3 TCOL 3,13

Example 4 TCOL 15,0 -

{WHITE

background).

69

displays GREEN
background

BLACK character

YELLOW

characters

on a white cell
characters on a RED cell

on a MAGENTA cell

returns to normal display setting
characters on

TRANSPRRENT cell

SOUND

Various options are available for sound and music; details will be found in
Chapter 14. For the moment type in the example given below followed by the
ENTER key and observe what happens.

Example BEEP

Now clear the screen,
Examples

NOTE: After trying out each of the examples, below, clear the program from
memory by typing NEW, followed by pressing the ENTER key.

N EW: ENTER

In the following examples type each 1ine followed by ENTER key. Observe the
results in each case.

Example 1 10 PRINT 7-3
20 PRINT 9-6/2
30 PRINT (10+2)-4%2
40 END
RUN

NOTE: To save time you can type ? instead of PRINT. 7 is an abbreviation for
the PRINT command.

The results of this program should appear as 4,6,4 on consecutive lines,
When execution is complete type in NEW and key ENTER. This will clear the
existing program from memory.

Example 2 5 REN SIGHT

10 CLS

20 BCOL 12

30 &COL 6,0

40 DRAW 70,100 TO 170,100,3

50 DRAW 120,35 TO 120,165,3

60 ELLIPSE 120,100,50

70 END

RUN
The results of this program should display a red circle with the horizontal
EH?EEEﬂiEaI diameters shown as red dotted lines. On completion key MEW

Fa

™ " Tr MM T "M ! ™1 "™ '"'F FT FFL "F1 'F1 FPTFT OTPD OMPFY OMFY TP O OWY

™

1. L L

L L)

- -y L =i - L | 4} i L | | =4 |

L

10 CLS

20 BCOL 3

30 BEEP

40 DRAM 70,100 TO 170,100,
50 VOICE 1,0,-12,0,1,20
60 A$= "GZAGFESCE3AGFESC®
65 TEMPO 5

70 MUSIC "V1°+A3

80 BCOL 13

90 BEEP

100 DRAW 120,34 TO 120,166,0
110 MUSIC *V1*"+A$

120 BCOL 10

130 BEEP

140 ELLIPSE 120,100,50

150 MUSIC "VI"+A$

160 BCOL 4

170 BEEP

180 END

AUN

Example 3

The following examples will 11lustrate some of the spectacular effects which
can be produced using the graphics capabilities, It is not intended that
the inexperienced user should understand how these work at this particular
time, but rather they are a demonstration of possibilities available once a
fuller appreciation of the BASIC language has been obtained.

Follow the instructions carefully:-

1. Clear the screen.

2. Clear the previous program from RAM. (NEW)
3. Type each example program as before.

5 REM CIRCLES

10 SCREEN 6

20 GCOL RND (14+42)

30 ELLIPSE RND (511), RND (191), RND (50), 0.59
40 &0TO 20

This program should display circles of random size, colour, and position on
a black background. To stop the program, press the SHIFT and BREAK keys
simultaneously. Key NEW ENTER to clear the memory.

5 REM POLYGONS

10 SCREEN &

20 GCOL RND (14+2)

30 POLY RND (5+3),RND(511).RND(191,RND({50),0.59
40 &0 TO 20

This program should display polygons of random size, colour and position on
2 black background. To stop execution, key SHIFT BREAK. Then KEY NEW, ENTER.

£

SUMMARY

a) BASIC - Consists of the following:
i) COMMANDS (NEW, CLS) etc

i) STATEMENTS

i) RESERVED WORDS

b) TWO MODES -
i) IMMEDIATE - Immediate response
ii) DEFERRED - Automatic execution,
delayed until the run command is used

c) EXAMPLES, illustrating:

i} CALCULATIONS

SIMPLE GRAPHICS

SIMPLE COLOUR

SIMPLE SOUND

MORE COMPLEX GRAPHICS/COLOUR

-
oy e iy
£ o e o omd
Tt e e T gt

d} SAVING PROGRAMS
PRDGRAMS

You should by now be familiar with some of the capabilities of the EINSTEIN
256. The facilities are accessed in either direct mode or deferred mode
through the use of programs.

REMEMBER - a PROGRAM is a sequence of instructions which direct the computer
to perform a particular task,

PROGRAN FORMAT

Each line of a program is numbered. It is common practice to begin at 10
and progress in increments of 10 (consecutive line numbers being 10, 20, 30,
40 etc.)

This is not absolutely necessary, as any numbers from 1 to 65,535 may be
used, provided they are in some form of ascending sequence (e.g. increments
of 10 or 100).

The purpose of incrementing in this manner is to allow space for the
insertion of extra 1ines. This may be necessary either to improve or alter
a program [or 1f a 1ine has accidentally been omitted!). Therefore there is
the flexibility of another 9 optional Tines between each existing line of a
pragram, Lines of a program are referred to as statements.

PROGRAM STORAGE IN RAM

When a program is typed in it is stored in RAM until either it is cleared or
the power 1s turned off. To input another program a special command must be
used which clears the existing program from memory. If this is not dane,
the new program overlaps the old program and sections of each will
intermingle depending on line numbers.

The NEW command, as used earlier, provides this facility. NEW is entered
immediately prior to commencing another program, thus clearing the memory of
any existing program.

= ri | " d d | dd i '~ o T a i ™I FIFI ™"F rri ™I ™ iTF e 1 o | s] e

Ll

RESERVED WORDS
The following RESERVED WORDS are very common in programs:-

REM
END
RUN
PRINT

REM - This is an abbreviation for REMARK. Any line preceded by REM 1is not
part of the program, but simply an aid to the programmer as a title, or
comment .

REM is optional and can be omitted to save memory space.

END - This terminates the program involved. In complex programs the END
statement is not necessarily the final statement in the Tisting. However,
when the end of the program corresponds to the last statement of the program
the END command may be omitted,

RUN - This is the "magic word" which makes everything work. RUN instructs
the computer to commence automatic execution of a program.

PRINT - This s an OUTPUT command and causes information/data to be
transferred to a particular output device such as screen or printer, etc.
For the moment we are only concerned with output to the screen.

Some of the previous examples have used the PRINT command but we will now
gxamine the format in a Tittle more detail.

i) If the material is in the form of an arithmetic expression (e.g. 2+7 or
3%5 etc.) the computer will evaluate the expression and then PRINT the
result only. This has been seen in previous examples.

ii) If the materdial is "TEXT" to be printed to the output device 1t must be
enclosed by double gquote marks (""}. Any displayable character within
the quotes will be output to the particular device in use at the time,
e,0. the screen.

Example: PRINT “COMPUTERS ARE QUICK®
This will cause COMPUTERS ARE QUICK to appear on the screen,
Look at the following program:-

10 REM A PROGRAM TO PRINT A NAME AND ADDRESS
PRINT "THE PRIME MINISTER®

PRINT "10 DOWNING STREET"

PRINT "LONDON®

PRINT “ENGLAND®

60 END

TYPE RUN

Az before, use NEW: ENTER to clear out the previous program, and CL5 ENTER
to clear thElscrEEn.

73

iii) The spacing in PRINT expressions can also be controlled using a
selection of SEPARATORS. SEPARATORS are symbols which are positioned
after print expressions to indicate specified output formats.

a) The ; (semi-colon) separating two expressions indicates that the second
expression will be printed immediately following the first, without a
space,

Example: PRINT "COMPUTER" ; “JARGON"
This will appear as COMPUTERJARGON

If spaces are left within the quote marks they will be considered to be
character positions when the print out is executed.

Example: PRINT "COMPUTER * ; "JARGON"
This will now appear as COMPUTER JARGON

b} The , (comma) at the end of one expression indicates that printing will
re-start at the next TAB POINT.

Tab positions are simply pre-set positions on each line of the screen
grid and are 10 columns apart as shown in Fig.6.1, The preset positions
can be altered by wusing the ZOME command.

TAR-PRINTE

10 10 \\

COLUNME | COLUMME

Ty

LL.-!] 1 =
Fig 6.1 Tab Positions

¢} When no separator is placed after a PRINT expression, then EINSTEIN 256
generates an automatic carriage return and line feed, so that
subsequent output will appear on the next line,

Example:

10 PRINT "THIS IS THE YEAR"
20 PRINT “OF HALLEY'S COMET"
30 PRINT "WILL NEXT APPEAR IN 2060"

Before typing in the above program, clear any old program by typing NEW,
followed by "ENTER". When you RUN the program, each print expression will
appear on a new line,

74

imE O OTF O OPFF WY Y O YYO'\’FRE Y™l YPRO''"'EFEOPPFE O OP"FL O OYIPRE O O'FFR O OTPFTDOOTPREEO MY OTIFRE TP OTT'RFEEOOTTTTF

=y

ERRORS/BUGS

A1l too often a program may be typed into the computer but when the RUN
command is issued nothing happens. This wusually means there is a fault
somewhere in the program 1isting and under normal circumstances the computer
will display an ERROR MESSAGE. This message gives some indication of the
error involved and which area of the program it affects.

When a program will not run correctly because of errors, we say i1t has a BUG

in it. We use the term DE-BUGGING to indicate tracing and correcting
arrors.
ERRDRS /SYNTAX

The most common category of errors in program listings are due to syntax.
This means that a particular statement or command has not been written in
its correct -format. BASIC must always be formatted precisely as indicated in
the handbook. Some of the more common syntax errors include:-

a) Incorrect use of punctuation marks.
b) Typing errors, ie. spelling mistakes.
c) Additions or exclusions to the format of a particular statement/command

A single punctuation mark out of place could prevent a whole program from
running, therefore accuracy of format 4is absolutely essential 1in the
listing.

A full listing of error messages, can be found in appendix A.

To exit a BASIC program whilst it is rumning, the BREAK key is used in
conjunction with SHIFT (i.e. SHIFT-BREAK)

This may be required for various reasons, but perhaps the most common use is
as follows:=

Occasionally, bad logic and structuring can cause a program to go into a
continuous cycle of processing which does not end. We say that the program
has gone into a loop.

The SHIFT-BREAK function is used to stop program execution and discover the
cause of the unwanted loop. BASIC will generate a message indicating the
line number when the BREAK occurred, This will usually be within the loop,
s0 pointing to the problem area, and allowing the programmer to correct it.

The program HALTS at whatever line it is on at the particular moment when
SHIFT-BREAK 15 used.

76

T 1 'T &1 ie 'y I i i p L N Fe T il 'y 41 3 N 2 &1 R ' B

'E '

| | | ™ | S T) D] Y a1 B0 | B L

11

EDITING

EBASIC has extensive editing facilities. It has been specifically designed
to make the task of program entry, and debugging more of a pleasure. Rather
than the tiresome task it can be with other BASIC interpreters. Input lines
can be up to 254 characters long. Full screen editing is supported, which
means that any line, which {is visible on the screen, can be corrected simply
by positioning the cursor aver the appropriate 1line, and making
sodifications to it, even if it occupies two, Or more, rows on the screen.
1f modifying the line extends it so that it would oveflow into the next
line, then tell the lines below move down a line, so as to create extra
space for the modified 1ine. When the line is suitably altered, the changes
are entered into the program by pressing the ENTER key.

The functions available within the BASIC editor are the INS/DEL
(insert/delete) key, the cursor control keys and the screen control codes.
Ths sereen control codes are fully explained in appendix.

Sometimes it is necessary to delete a character, or even to insert spaces to
allow for extra characters. To delete a character, position the cursor,
using the cursor control keys, to the character immediately to the right of
the unwanted character, and press the DEL key. The offending character will
be deletad. The action of the DEL key is to delete the character which is
to the left of the cursor.

In order to create space for extra characters, position the cursor at the
point where the insertion is to take place. Press the SHIFT and INS/DEL key

together, and a space will be inserted. The extra character (s) can then be
typed in without overwriting existing data.

Don't forget to press the ENTER key to add your modifications to the
program.

The Line Editor

The "line edit" mode is available primarily as an alternative for use with
programs where the "screen editor” might not be quite so convenient.

In “line edit" mode the only editing functions which pperate are as
follows:-

al The "cursor left" function on the cursor control key acts as a "back
space” and deletes characters as it moves. A1l other functions of cursor
control keys are non-operational.

B} CRTL-A transfers the screen contents to a printer.
] Re-typing of a program line so as to gverwrite the original line.

211 other control functions and cursor movements as described in "SCREEN
“ONTROL CODES® and "BASIC EDITOR" are non-operational under LINE EDIT mode.

77

To use the LINE EDITOR carry out the following procedure:-
1) Type IOM 2,0

This activates an internal ‘"switch® which then allows the option of
selecting either LINE EDIT or SCREEN EDIT.

2) Type IOM 0,0
This now sets the "switeh" to LINE EDIT mode (i.a. goes into line edit)
3) To return to SCREEN EDIT type IOM 0,1.

When Tine edit is no longer required I0M 2,1 is used to de-activate the
internal “switch",

NOTE:

i} During "line edit™ the: prampt in front of the cursor becomes a
harizontal arrow (—=) in direct mode.,

ii) The arrow changes to a question mark (7) if an INPUT statement s used
without a specified “prompt string".

SUMMARY

a) A PROGRAM is a list of instructions with:-
) Each line numbered
ii) Increments of 10 commonly used

b} Programs are stored temporarily in RAM
¢) Programs cleared from RAM by "NEW" command
d) Permanent storage of programs s on disc (backing store)

e} Introduction to:
i) REM
ii) END
111) RUN
iv) PRINT and use of separators

f) Introduction to errors:
1) BUG
i1) SYNTAX ERROS

ii1) DEBUGGING

78

(¥ oK =g = i [re—— [F—

1T

wll W BT M KT KT BT BT &7

| A Y A

&1 &I &l

% S % B S Bt 4 ' 8

Al

CHAPTER 7
SYSTEM “COMMAND KEYS"

CTRL-BREAK

Simultaneously pressing CONTROL and BREAK keys causes a transfer to the disc
operating system from BASIC.

SHIFT-BREAK
Holding down the SHIFT key and then pressing BREAK halts program execution,
preserying all variables, The CONT command can then be used to allow

continuation of program execution if required, The message "Break 1in
line..." is displayed on the screen when SHIFT-BREAK is used.

BREAK

The BREAK key halts program execution whilst it is held down, but execution
continues when the key is released, (variables are preserved).

ESC

Pressing the ESCAPE key causes 1isting and tabulations to be aborted.
HARDMARE RESET

Pressing the CRTL;ALPHA LOCK, and GRAPH keys simultaneously causes a
hardware reset, just as if the computer had been switched off, and on again.
A1l program data and variables are Jost. It should not normally be

necessary to use this facility, except as a means of exiting some
'autobooting' programs, particularly games.

79

14

I.[’

il

14

Lol

B A * A * I A % 4 A % A 4 L % LN L 4

CHAPTER 8
NUMBERS AND STRINGS

There are two types of data used in EBASIC 4:-

NUMERIC DATA
STRING DATA

NUMERIC DATA
These can be whole numbers (integers), or floating point numbers (reals).

Integers
Integers are whole numbers without fractions or decimal points.

The number can be positive or negative and must fall within the range -32768
to +32767. (BASIC supports 16 bit integers).

Examples: 44, 6, -17, 32500, -25076

Numbers in the ranges -65535 to -32769, and 32768 to 65535, may be accepted
by integer variables. In these cases the values are internally converted to
£all in the range 1 to 32767 and -32768 to -1 respectively [otherwise 17

hits would be needed to store each number). Integers, in BASIC, are shown by
the % sign after the variable name

Floating-Point Numbers
Floating point numbers can be whole numbers, or decimal numbers.

They can be positive or negative and if no sign is given the number 1s
assumed to be positive.

The following are examples of floating poin* numbers which are also
integers.

b -14 2650 -21

The following examples include decimal points.

7530.2% 0.7 7.4 -0.0008 -27.029

Commas must NOT be used in numbers otherwise a syntax error may result.

For storage purposes, floating point numbers are internally converted to
scientific notation.

Scientific Notation

A number in scientific notation is expressed as a base number (mantissa)
multiplied by 10 raised to a particular power of 10 {EXPONENT)

sMBER = MANTISSA x 10E*PONENT (poer of 10)

Exmple: 3113 = 3.113 x 10° i

In BASIC this "scientific notation" is as follows:-
3.265 x 107 is entered as 3.26564 in BASIC
For a negative power:-

3.265 x 107" is entered as 3.265E-4 in BASIC

By using Scientific Notation very large and very small numbers are easily
handled by the computer.

The exponent range is given below:-

MAXIMUM - 1.7071411E38
MINIMUM - 0.940396E-38

Any computations yielding a result above or below these values will display
a quantity error,

Four bytes are used to store numbers internally, one of which represent the
"signed Exponent" and the other three the “signed mantissa".

The "exponent" can range from -38 to +38 whilst the signed mantissa can be

up to seven digits, (any value outside this range will cause a quantity
error to be displayed).

The full seven digits of a mantissa are used internally for calculations but
are then rounded off to six significant figures for output. (Always use a
seventh figure if known for accuracy even though only six are displayed).

Leading and trailing zeros are always suppressed on output. This avoids
long trails of zeros either preceding or following a number.

In practice, very large numbers or very small numbers can be entered in
"decimal" or “scientific notation" as required, but may be automatically
output in scientific notation only.

Hexadecimal (HEX) Numbers

Hexadecimal numbers are to base 16, and are expressed using a combination of
numbers in the range 0 to 9 and letters in the range A to F. The following
table gives the Hexadecimal characters with decimal number equivalents.

HEXADECIMAL DECIMAL HEXADECIMAL DECIMAL

0o - 0 R N
Y ainge g e
B e D
Jurredn ave § gRIISDIT
3 - 4 C 12
St N B = 73
I £ = n
2w) F - 15

Example: HEX B3 15 equivalent to 179 decimal.

a8z

"M re=p " p 3 FIFE| [}] i [¥ d] i T k] Lk 8 TP T [Fa— i —— P jre— e e

(3

el BT T KT OB BRI ORI R M R EEOET R T REOEE L

3 I 8

e

Evaluation
3% 16* =3 (16" = 1)}

Bx 16 =176 (ie 11 x 16)
Total 179

Using HEX numbers:

1) An ampersand symbol (&) 1is used as a prefix to indicate Hexadecimal
numbers. e.g: &1298 &A7 &1F34

2} When hexadecimal numbers are used fin numeric expressions they are
internally converted to & decimal number. The hexadecimal number must not
exceed four digits. If more than four digits are entered only the LAST FOUR

will be used.
Example:

81F34 equivalent to 7988 decimal
471F34 still equivalent to 7988 decimal because only the LAST FOUR digits

are used, (i.e. the 7 is ignored].

STRING DATA

Strings are combinations of ASCII characters representing letters, numbers,
and symbols.

They are useful for storing names, titles, and text, but can also be used to
hold numeric values.

A string can be any combination of up to 255 characters, usually shown in
quotes.

Example: - "HELPLESS"
x| ZK
"1379.76" etc.

Concatenation of 5trings

Strin?s can be CONCATENATED (i.e. strung together consecutively) using the
"+" sign.

+ STRING 4
[STRING 2] = [STRING 1] STRING 2 | STRING 3]
+

Example: 10 A$ = "MOUSE"
20 B} = "TRAP"
30 C$4 = AS + BY
40 PRIMNT C3
RUN

This will give a display of MOUSETRAP.

83

Strings and Relational Operators

Strings can be compared using relational operators:-

My DM WL 5

Examples: hred e
IISHITII IrSHITE-

"MOUSETRAP" = "MOUSETRAP"
The comparison is done character by character until a position is found in
which the two differ. The "greater®™ string is the one whose differing
character has the greater ASCII code. If no differences are found, but one
string is longer than the other, the longer string is considered to be the
graater.
Example 1
Character difference on comparison.
"STEPHEN" "DAYID™
ASCII 83 ASCII 68

.". "STEPHEN" is greater than "DAVID"
"STEPHEN" = "DAVID"

Example 2

Character difference on comparison,
"ANDY" "ANDREW"

ASCII B89 ASEII 82

-« "ANDY" 1s greater than "ANDREW"
"ANDY" > "ANDREW"

Example 3
No character difference detected but one string longer.

“MOUSE" "MOUSETRAP"

. "MOUSETRAP" is greater than “"MOUSE"
MOUSETRAP = MOUSE

B4

- O e s e s B B O RTORTORM OB OB R OB RO OB R A

VARIABLES

Variables are "names" used to represent values. The values are either
assigned by the programmer, or as a result of calculations/operations within
the program. Prior to being assigned a value, a variable is assumed to be
zero.

A variable "name" can be a combination of letters or letters and numbers but
the first character must always be a letter.

Examples: VALID NAMES INVALID NAMES

ZFBC 6BLF
SAP *¥aL
L93A7 1798

Yariables may be of the following types:-

FLOATING POINT = holds numbers
NUMERIC - Y INTEGER - holds whole numbers.
STRING - holds strings.

Variable "types" are indicated by characters which suffix the wvariable
"name" .

i) Floating point variables are the default type, having no suffix after
the variable name.

Example: ATC

ii) Integer variables are indicated by the presence of a % sign after the
variable name.

Example: BX7%

iii) A string variable is indicated by the presence of a § sign immediately
following the variable name.

Example: ZUuP%

EBASIC wuses the first five characters only of a variable name. More can be
entered (within the limits of the maximum line length) but characters after
the 5th will be ignored by BASIC.

Examples:

AB123%
SLOPY$
SLOPYXZS

A1l three are valid variable names but the BASIC would not distinguish
between the 2Znd and 3rd example because the first five characters of each
are identical.

Care must be taken to ensure that variable names do not contain reserved
words!

85

EXAMPLES:
TONE,LETTERS,PINCH, TERROR

All the above examples contain reserved words, as indicated below, and could
cause problems!

TOne,LETter, pINCH, tERROR

It is advisable to keep variable names to two characters to avoid this
problem, and commonly only one letter is used, (the only two character
reserved words are IF,OR,LN,TO,ON,FN,PI)

ARRAYS

An ARRAY is in effect a 1ist or table full of variables. There are NUMERIC
arrays and STRING arrays.

In the case of a 1ist each element of the list is numbered in order of
appearance. The numbers are then used to refer to individual elements by
inserting them immediately after the variable name.

Example: Al2)

This refers to the 3rd element of the array variable A. (Array subscripts
start at 0)

This is known as SUBSCRIPTING the array, the numbers, or variables, within
the brackets being the subscripts.

Lists have a single subscript and are known as one dimension arrays.

In the case of tables there would be two subscripts referencing individual
elements in a similar manner to map or graph co-ordinates. These are known
as two dimensional arrays.

Example: B(2,3)

The numbers indicate vertical column and horizontal row numbers relative to
the element required.

EBASIC also caters for 3 dimensional arrays thereby giving 3 subscripts
after the array name.

Example: B(2,0,1)

Arrays in higher dimensions can be supported by EBASIC, the 1imit being
determined by the amount of memory available at any one time.

NOTE:

i) The array subscripts always number from zero.

i1) Arrays containing more than 10 elements must be dimensioned with a DIM
statement to inform the BASIC how much space to allocate for it. DIM
statements are explained in detail in a later section of this handbook,

111)If you are unfamiliar with arrays refer to Chapter 8.

86

E] L [} 4 i] e g @ R [0 | e e - [

X 11l g i] e i

¥

(=T} T ol

BB T AT KT ORT RTORT O RT WM REOET KT ORE TR

110,

EXPRESSIONS AND OPERATORS

EXPRESSIONS

Expressions consist of:-

i) MWumeric Variables

ii) MNumeric Data

f11) String Variables

iv) String Data

These can be combined using arithmetic, logical and relational operators.

ARITHMETIC OPERATORS

The arithmetic operators in order of precedence are as follows:-

OPERATOR OPERATION EXAMPLE | MATHEMATICAL
EXPRESSION
[] Parenthesis I*(2+6) 3{2+6)
Exponentiation 5 2 52
(raise to power)
= Multiply 34 Ixd
! Divide a/2 42
MO Remainder BMO03 8+3=2 rem.?2
+ Addition 342 3+2
- Subtraction 2-1 2=1
Example:
BASIC MATHS
6*(2+6)/2 3-5 G{2+6)
23

The order of operation in this expression is as follows:-

il Brackets evaluation
ii) Powers evaluation -
iii) Multiplication and Division evaluation
iv) Subtraction evaluation

B7

MO0 accounts for the remainder after Division -

Example:

EMOD3 would return a value of 2 (i.e. 5+3=1 remainder 2)
FMOD2 would return a value of 1 (ie. 7+2=3 remainder 1}
BMOD3 would return a value of 2 (ie. B+3=2 remainder 2)

The actual process undertaken to obtain these values is a follows:-

FOR ANY TWO VALUES 'X' and "Y'
THEN XMODY = X-Y*INT(X/Y)

This section returns the largest integer (whole number)
less than or equal to the result of the division
computation.

Examples of MOD:

1) For a value of X=5 and Y=3
EMOD3 = 5-3*INT(5/3)
5-3*INT(1.6666)

§-3%]
« s« OMOD3 = 2

2) For a value of X=7 and Y=2

3) 7MODZ = 7-2*INT(7/2)
= 7=2*INT(3.5)
= J-2%3
", 7MODZ = 1

If the values of 'X' are negative then because of the INT function the
results are sometimes unexpected., Using the same examples as above but with
K==3, and -7 respectively we would see the following:-

1) -5MOD3 = -5-3*INT(-5/3)
= -5-3*INT(-1.6666)
= -5-3%(-2)
= -5-(-6)
.". =5MOD3 = 1

2] =7M0D2 = -7-2*INT(-7/2)

= =J=-2*INT(-3.5)
= =7-2%(-4)
= -7-(-8)
«+» =IM0D2 =1

Thus we can see the following comparison:-

1
1

SMOD3
TMOD2

2 BUT -5MOD3
1 AND -7M0D2

% LT 4 S A {4

Ll LI

19 S % I % A % 1 e 4

Ll

Ml

Al

RELATIONAL OPERATORS

Relational operators are commonly used with IF statements for comparisons
and the evaluation of conditions. EBASIC uses the following:-

>greater than > = greater than or equal to

< less than <= less than or equal to
= equal to < = not equal to

LOGICAL OPERATORS

Again logical operators are commonly used with IF statements in conjunction
with relational operators. EBASIC contains the following (1isted 1in

descending order of precedence).
NOT, AND, OR, XOR (Exclusive-OR)
Example: 10 IF(X+Y-Z) 3 AND Y =20 THEN 100

This performs a bit-by-bit lTogical AND of each numeric expression. If both
hits are set to a '1' then the result bit is set to a '1'. If either bit is

a '0' the result bit is set to '0'.
NOTE: Although expressions involving relational and logical operators are
normally used within IF statements, they can also be used within arithmetic

expressions (a relational expression returns a value of -1 if it 1s TRUE,
and 0 1f FALSE).

In some cases, quite a lot of space can be saved:-
Example: IF X 15 THEN A=0:ELSE A=]

This could be replaced by:- A = -(X 15}

a9

L 4

S L I 4 S ¥ % I 4 % 8 A | 4 A A 0 S %

Al

CHAPTER 9
PROGRAM STRUCTLURE

There are three fundamental facilities within the structure of a program:

1. SEQUENCE
2. BRANCH
3. LOOP

1. SEQUENCE

This is the ability to execute dinstructions one after another in a
continuous sequence. A1l the example programs used previously exhibit this
facility.

2. BRANCH

This §s the ability to execute one of several sets of instructions within a
program as a result of decision making.

Branching is controlled three ways in BASIC:

i) IF-THEN command

i1) GOTD command

iii} Subroutines (GOSUB command)

Further details of these three commands can be obtained from Chapter 10.

i} The IF-THEN command is a conditional branch and has the following format:

IF "a condition exists™ THEN "execute a given set of instructions". Fig 3.1
depicts a practical example of where a decision is called for,

ODECISION POINT

m:nEl@ Dol oa| [Bo
gl o= L= =

I'F TEERE IL FOAT FOm 1 A48 0

THEH wapacs ors sead Pl COLEARES

o |

=1 N==
0| [p=
1

Fig 9.1

91

This cen be compared with decisions we make in our everyday lives. For
example:-

1 i oA - raining: THEN “wear a raincoat"

I |
CONDITION OPTION

If the condition 1s true, - the option instruction is executed before
cantinuing. If the condition is not true, the option instruction is ignored
and you continue, The assumption is made therefore that if it is not
raining you do not wear a raincoat.

The flowchart format would appear as shown in Fig 9.2. The "diamond” box is
the standard method of indicating a decision point in a flowchart, thereby
creating a branch (1.e. a gquestion box).

WEAR A
BATROONT

CONTIHLE

Fig 9.2
Example

10 REM EXAMPLE

20 LET A =1

30 LET A = A+1

40 IF A = & THEN PRINT “FINISHED"
ED LI I I I B I

E‘ﬂ LE R A EE B ERENR]

ETC.

The condition is "IF A = 6". The option instruction is print finished (see
Fig 9.3) The computer assumes that if A is not = 6 then 1t must ignore the
PRINT instruction and carry on to the next listed instruction in the normal
sequence.

92

Ry

111) SUBROUTINES

Quite often in a program, a particular sequence of instructions may occur
several times. To avoid reproducing the seguence each time, the
instructions are grouped separately as a SUBROUTINE. The computer can
simply go to the subroutine from any line in the program and return to the
same place to continue the main program. subroutines are in fact a
mini-program and could operate in isolation if required.

The GOSUB statement

The "GOSUB" command followed by a line number ie used 1n a program to inform
the computer that it should access a subroutine at that point, e.g. GOSUB
90 accesses a subroutine which starts at line 90.

The final line of any subroutine must contain the RETURN instruction. This
sends the computer back into the main stream program at the l1ine immediately
following the GOSUB instruction, Thus, if Tline 60 was the GOSUB
instructions, the computer returns to line 70. .

There can be any number of subroutines attached to a program and each
individual subroutine can be accessed any number of times.

Example 1

We can make a comparison here with a touring holiday which involves the use
of twe different types of accommodation according to Tocation.

Look at Fig 9.4 which illustrates the example, The use of GOSUE in this
example has avoided the repetition of instructions for accommodation at the

various locations. If we transpose this i]lustration into a program format
it appears as shown in Fig 9.5.

In this example:-

LINES 10 to 210 represent the "Mainsteam" program.
LINES 220 to 270 represent the CAMPING subroutine,
LINES 280 to 330 represent the HOTEL subroutine.

The subroutines are accessed at various points in the main program as
follows:-

LINE 50 accesses the camping subroutine and then RETURNS to Tine &0,
LINE 80 accesses the camping subroutine and them RETURNS ta line 90.
LINE 120 accesses the hotel subroutine and then RETURNS to Tine 130,
LINE 150 accesses the camping subroutine and then RETURNS to line 160.
LINE 190 accesses the hotel subroutine and then RETURNS to line 200,

94

[] =i = [T k1 P o T " [r— ——

L) |

™ ™ W W

10 Leawva Home

Travel to i—
lat location.

Travel bo —

20
30
40
50 GASUR 220 (Camping]
&0
2nd location. 0
B) GOSIR 220 (Camping)
90

Traval to — 100
drd location

e Instructs computer
120 GOSUB PE0 [(Hotel] s— & 90 to appropriate
subroutine.

Teawl to aacl ¥

ath Location. 140
150 GOSUB 220 (Camping)
(160

Travel to — 1T

Sth 1

occatlion 180

190 EOSEB 280 ({Hotal)

- 210 END (Arrive Aome} END OF MAIN PROGRAM.
A ST TURR 320 "REM Camp Subroutine T A S
23 Erect tent
Subroutine — 240 Cook Meals
for camping 250 Use Sleeping Bags
260 Collapse tent in morning
270 BFETUBN [continue Journey) . IMSTRICTS COMPUTER
280 REM HOTEL SUBROUTIME TO RETURN TD MATN
29 Check into Hotel TN
?:I:r::;::i;-n | ¥ meals in Restaurant.
N2 ESleep in Beds,
320 theck out in morRing
[330 RETURN [(Continue jourmey),

Fig 9.5
96

Rl

Example 2

Type in the following program and observe the results on the

10

20

30

40

a0

60

70

B0

90
100
110
120
130
140
150
160
170
180
180
200
210
22l
230
240
250
260
270
280
230
300
310
320
330
340

In this example the "mainstream" program 1s 10 to 270, and the subroutine 1s
280 to 340,

The action of the subroutine is to print a line of “*" accompanie
change and a noise, following eac
five times during the program,

REM MAGICIANS POEM

CLS

PRINT

PRINT " ™, "MAGICIANS POEM"
BCOLZ

PRINT

GOSUE 280

PRINT

PRINT " ", "ABRACADAERA®
PRINT

GOSUB 280

PRINT

BCOL1D

PRINT "WHITE RABBITS AND MICE"
PRINT

GOSUB 280

PRINT

BCOL13

PRINT "ALL MIXED TOGETHER"
PRINT

GOSUB 280

PRINT

BCOLY

PRINT "IN A BUCKET OF RICE"
PRINT

GOSUB 280

END

REM SUBROUTINME

FOR I =1 TO 30

BCOLA

PRINT "3

NEXT I

BEEP

RETURN

subroutine for this purpose.

97

h 1ine of print on the screen. :
thus 11lustrating the advantage of using a

SCTeen.

d by colour
This occurs

3. Loop

This is the ability to loop back and repeat certain sequences of
instructions as required.

Fig. 9.6 illustrates a practical application of the loop principle

ZN

R R o el

EMPTY BUCKET INTO
TANK, GO BACK- Loop
REFILL FROK TAP

HhHh“‘*-__H___ﬂ.-—-“’##ﬂf

FILL THE BUCKET
FROM THE TAP

Fig. 9.6

Loops in programs can be set up in various ways. The two most commonly used
methods involve:

i) Combinations of IF-THEN and GOTO statements.
i1) FOR-TO-NEXT statement.

i) The following program example and flowchart (Fig 9.7) illustrates the
IF/THEN/GOTO combination:-

10 “LET 1 =0
PRINT "7" :
rrgg LET I = I+]
40 IF I =256 THEN GOTO 20
50 END

LINE 40 is the operative line of the loap. It asks 1f I is less than 256
and if so instructs the computer to g0 back to 1ine 20 and repeat the
sequence of instructions again,

98

PLACE & VAalre

OF 1 INTo LINE 10
STUEE I

o g LINE 20

LOOP |

-
]
m

“da

LINE 30

E
H

Fig. 9.8

LIKE 10 Sets the lower and upper limits for the values to be stored in I,
LINE 20 Instructs the computer to print a "¢,

LINE 30 Instructs the computer to dincrement I and repeats the previous
instructions, (Incrementing will be one unit at a time unless otherwise
stated in the program,)

The loop will continue until the upper Timit of I set in the first statement
15 reached; at that point the program will end. Note that on this occasion
the question to determine the value of I and compare 1t with the maximum
value is inherent and assymed 45 a result of the FOR-TO-NEXT statement.
Greater efficiency is therefore achieved,

100

U e A 8

The following analogy (fig 9.9) may help to explain the FOR-TO-NEXT laop
further. Imagine a "window cleaner” is to clean the windows of each house

in a street of 10 houses.

Fig 9.9
For each house he will carry out the same process.

a) Ciean lower windows)
b) Clean upper windows | "cleaning process”
c) Collect payment

Thus, for house number 1 he will carry out the "cleaning process®, then for
house number ? he will REPEAT the “cleaning process”, then for house number
3 and so on, In other words he repeats the "cleaning process® for each
house number in turn, working his way along the street.

If we write this down as a sequence of instructions, it appears as:

1. FOR each house number from 1 to 10.
2. clean the lower windows

3. clean the upper windows

4. collect the payment

5. move to the NEXT house number

We can see the formation of a FOR=TO-NEXT loop the program for which appears
below with H representing the house numbers.

10 FORH =1 to 10

20 clean lower windows
30 clean upper windows
40 collect payment

50 NEXT H

101

If the window cleaner had only to clean the houses on one side of the
street, say the odd numbers (1,3,5,7,9) then he would need another
instruction to inform him of this. The instructions would now appear as:-

FOR each house number from 1 to 9, moving to every second house number
clean lower windows

. Clean upper windows

collect payment

5. move to NEXT house number

-b--l'.um-—l

The section “moving to every second house number® can be replaced by the
word STEP followed by the number 2 (i.e. STEP 2). This indicates the amount
of increment required between the house number and the next one to be
cleaned (i.e. 1+2=3, 3+2=5 and so on). Thus the FOR-NEXT loop would now
appear as:-

10 FORH =1 to 9 STEP 2
20 clean lower windows
30 clean upper windows
40 collect payment

50 NEXT H

Therefore the processing is unchanged but the inclusion of STEP 2 indicates
that the house numbers will be incremented by two as opposed to one each
time, STEP 3 would give an increment of 3 (i.e. house numbers 1,4,7). STEP
4 would give an increment of 4 (i.e. house numbers 1,5,9) and so on.

Examples

T 10 FORI =1 TO 10 STEP 3
20 PRINT I
30 NEXT I

This would take each value of I from 1 to 10 in increments of 3 and pr1nt it
on the output device as follows:

1

4

7

10

2, 10 FORI =1 TD 20
20 PRINT "+*";
30 NEXT I
40 END

This would cause a print on the output device of a row of 20 *

More information and details relating to the FOR-TO-NEXT statement will be
found in Chapter 10.

102

| Y Y N

L I

L LI LI LR

Ll

MMM

oM MM M OM M MM

SINEARY
2) SEQUENCE

&) BRANCH - Introduction to:
i) IF-THEN (conditional)
ii) GOTO {unconditional)
f41) SUBROUTINES
a) GOSUB
&) RETURN

c) LOOPS - Introduction to:
i) IF/THEN/GOTO {Loop)
ii) FOR-TQ-NEXT (Loop)

103

- . s -y = L L) L L L _L L L -y sy

CHAPTER 10
BASIC RESERVED WORDS

ABS ADC

ABS (Absolute value)
Symtax: ABS(N)

Where N 15 any numeric expression.

se: The ABS function returns the absolute value of the numeric
expression, 1.e. ignores signs, always returning positive values.

Example:
X=ABS(-3.14159)
This will return a value of 3.1415%9 in X.

Related Keyword : 5GN

ADC (Pseudo Analogue to Digital Converter)
Syntax: ADC(J}
Where J 15 a "channel number" given as 0,1,2, or 3.

Purpose: This is a function which reads the value at the Joystick port for
the channel specified in J.

Channel Function Joystick Port
0 Teft/right e
1 up/down 2
2 left/right 1
K| up/down 1

for each channel a value of O represents left, or down, as appropriate; 127
the centre position; and 255 right, or up, as appropriate.

The function allows incorporation of joystick control into a program.

Examples:

A = ADC(O) PRINT ADC(0O)
PRINT A

This will read the current value at the analogue | port for channel 0, and
display its value. With no joystick connected, the result should be 127,
corresponding to the centre position.

B=lated Keywords: BTH,JOY 105

AND

AND
Syntax: statement AND statement

Purpose: This is a LOGICAL OPERATOR used in the evaluation/comparison of
statements and/or numeric expressions.

Examples:
10 IF {x + y}<=3 AND y = 20 THEN 100

This will transfer program execution to line 100 1f (x + ¥} 45 not
equal to 3 and at the same time y = 20

20 A = 15 AND 7

This returns a value A =.?.

30 K = INCH AND &DF

This returns upper case ASCII whether upper or lower case entered.

Related Keywords: ELSE IF NOT OR THEN XOR

106

R Rt i i A L

APPEND

APPEND
Syntax: APPEND <ufn>, 5V

<ufn= must be a legal "file name". 5V is a string variable {but not a string
array element) and is called the file descriptor.

< This command is used to write extra information at the end of a
sequential file when to OPEN the file and read to the end would be most

inefficient.

The operation is similar to OPEN with the following differences:-
a) no record length is supplied.
b} the internal file pointer moves to the end of the file not the start
of the file.
Example:
APPEND "0:SILLY.DAT",FD$
This will perform the following:-

a) opens the file SILLY.DAT on the disc currently in drive 0, and moves
the pointer to the end of the file so data may be added.

b} assigns FD$ has been assigned as the file descriptor.

NOTE: If the file specified by <file> does not exist on the disc then a NO
FILE ERROR will be given.

Related Keywords : CLOSE CREATE OPEN

107

ASC ATN

ASC [(American Standard Code For Information Interchange - ASCII)
Syntax: ASC(<string expression=)

Purpose: This 1s a 5tandard String Function which returns the ASCII value
{in decimal) of the first character of the string given in the function.

To display the values given by this function use the PRINT command as a
prefix.

Example:
¥=ASC(™ABC")

This will return a value of 65 in X. X contains the ASCII value of A
(1.e. the first character of the string).

65 is the decimal code for A.

Related Keywords : CHR$ STRS

ATH{Arctangent)
Syntax: ATN(N)
Where N 15 a number or a numeric expression.

Purpose: This is a 5Standard Function which returns the arctangent of N, in
radians, within the range - PI/2 to +PI/2

Example:
X=ATN(1)
Returns a value of 0.785398 radians in X. (i.e. PI/4 radians or 45°)
Other Transcendental Functions:
ASNIX)=ATN{X/SOR(1=-X*X}}) arcsin(x)
ACS(X)=(PI/2)-ASN(X) arccos(x)
HCS(X)=(EXP(X)+EXP{=x))/2 cosh(x)

HSH(X)=(EXP{X)-EXP{-X))/2 sinh(x)
HTN(X)=1-2/(1+EXP(X*2)) tanh(x)

Related Keywords : COS SIN TAN

108

] % D | B .

14

L L L B LU | B 1 B LR Y B Y ') D Y | LA L Y 8

AUTO

AUTD (Automatic Line Numbering)
Symtax: AUTO L1,L2
L1 is the 1ine number from which automatic numbering is to commence.

L2 is an increment wvalue for the numbers to be wused in the automatic
numbering sequence.

Both L1 and L2 will default to a value of 10 if they are not stated.

Purpose: This is a System Command which gives automatic Tine numbering while
entering a program.

Examples:

AUTO 100,5 Starts at line 100 and continues
105,110,115, ete.

AUTO 100 Starts at line 100 and continues
110,120,130,8tc.

AUTO, 20 Starts at line 10 and continues
30,50,70,etc.

AUTO Starts at line 10 and continues
20,30,40,50,etc.

When AUTO has been invoked, the next Tine number automatically appears for
the user to continue after the ENTER key has been pressed.

Each number is displayed just as if it had been typed from the keyboard.
The automatic line numbering may be abandoned keying "SHIFT-EREAK®.

The "editing mode™ is not affected by the use of AUTO,

Related Keyword: RENUM

109

BAUD BCOL

BAUD {Baud Rate)
Syntax:BAUD R,T,

Purpose: This 15 a command to set the receive and transmit rates of the
serial port R represents the receive channel, and T the transmit channel.
R and T can have values in the range 0 to 8, and represent the receive and
transmit rates as defined in the table below.

Yalue Baud Rate Value Baud Rate
0 15 5 1200
1 110 & 2400
2 150 7 4800
3 300 B 9600
4 600

Any mix of receive and transmit rates is possible with the exception that a
receive rate of 75 baud can only be set if the transmit rate is also 75
baud.
The default value is 9500 baud for both transmit and receive,
Example:

BAUD 5,0

Sets ug the serial port to 1200 baud receive, 75 baud transmit, (Prestel
speeds).

Related Keyword: MODE

BCOL {Eackdruplgglpur]
Syntax: BCOL N
N can be a value from 0 to 15, each number representing a particular colour

as defined by the PCOL command. The default pallette settings are given in
appendix D.

Purpose: This is a Display Command which sets the backdrop colour according
to the value of M.

110

19

]

ORI B R R B R R OB M B R R R IR

Al

' I Y

BEEP

Example:
BCOL &
This would set the backdrop colour on the screen to Dark Red.
When BASIC is loaded the backdrop colour is set to 4 (Dark Blue)
The Backdrop colour is maintained with SCREEN mode changes.
The Backdrop command is operative in all SCREEN modes.

Related Keywords : GCOL, PCOL, TCOL

BEEP
Syntax: BEEP J
Purpose: This is a Sound Command which causes an 880Hz tone to be sounded

for a length of time indicated by the value of J which must be in the range
1 to 2565.

J=YALUE TIME
1 100ms
2 200ms
3 300ms
4 400ms
5 B00ms
255 25, 500ms
Example:
BEEP 20

This will cause the tone to be sounded for a length of time equivalent to
2000ms (2 seconds).

It is useful as an audible prompt that some process has been accomplished,
or a mistake has occurred, wusually in programs requiring input from the
keyboard.

Related Keywords : MUSIC P3G

m

BINS BTN

BIN$ (Binary String)
Syntax: BIN$(I,J)

Purpose: This is a Machine Code related command which returns the Binary
number which corresponds to the decimal number given by I.

J indicates the number of binary digits to be returned in the result and
must evaluate to an integer which is less than, or equal to, 16, If J is
omitted then 16 binary digits are returned (the number being "padded” with
leading zeros if necessary).

If the value of J is too small for the binary number to be returned, then
anly the J least significant digits will be returned.

Example:
X5=BINS(86)
This will return a result of 0000000001010110 in X3
X$=BIN$(42,8)
This will return a result of 00101010 in X$

Related Keyword : HEXS

BTN (Press Button)

Syntax: BTN{(J)

Where J is given as 0 or 1.

Purpose: This function returns a value of 0 or 1 for a press button
connected to the Analogue 1 and Analogue ? ports.

For the Analogue 1 port J=0

For the Analogue 2 port J=]

When the button is pressed a value of 0 is returned.
When the button is not pressed a value of 1 is returned.

A common application of this function relates to the firing button

incorporated with joystick controls, but it can also be used to signal the
program of some external stimulus.

112

i

Ll

S I B § S 4 B 8 €O A

L

_L DU | B | B Y D Y D N .

CALL

Examples:
1) B = BTN{O)
PRINT B

This will return a value (either 0 or 1) in B according to the status of
the Analogue 1 port. The value can be output using the PRINT statement.

2) 30 IF BTN{O) = O THEN CLS
Related Keyword: ADC

CALL
Syntax: CALL I

Purpose: This is a Machine Code related command which calls a machine code
subroutine which starts from the address given by I. The related machine
code subroutine must be terminated with a &C9 (return) code. This will
automatically return control to BASIC.

Example: CALL 3840

This causes execution of machine code from location &0F00 (i.e. HEX
equivalent of 3840 decimal).

NOTE: The pointer to the current position in the program text will be
available at the top of stack, if required.

Syntax: CALL(E)

Purpose: E 15 passed to the floating point accumulator within the BASIC
interpreter. Machine code is then executed from the address set by means of
the PTR 9,1 command. This defines the location for the machine code routine.
Again a &9 (return) code returns control to BASIC, and the contents of the
floating point accumulator form the argument of the CALL function.

Example: A = CALL(E)
The value of B is loaded into the floating point accumulator, On return
from the machine code routine, the contents of the floating point
accumulator are passed into variable A.

Related Keywords: PTR, CLEAR

113

CHAIN

CHAIN
Syntax: CHAIN L
Where L, if given, is a line number.

Purpose: In this case CHAIN is similar to the RUN command except that all
variables are preserved and can be passed from one program to another,

Examples:
CHAIN - Executes the program currently in memory.
CHAIN 50 - Begins execution at line number 50.
Syntax: CHAIN <file=

Where file must be a legal "file name® as described in Chapter 13, File
Handling in BASIC.

Purpose: In this case the file specified by file 45 loaded from the disc
and executed. This 15 similar to RUN file except that all variables are
preserved.

Example:

CHAIN “PRDG® =~ This 1loads and executes a program called "PROG"
preserving any variables,

NOTE: Programs can be combined using a combination of CHAIN, HOLD, and MGE
conmands. this could be useful in large applications which may be divided
into smaller programs, all using the same variables,

Related Keyword : RUN

114

=y v BE kb b REOREOBE OREORY WM 8 N .

CHAR

CHAR (Character Set)

ayntax: CHAR N

Purpose: This is a command te change the character set. It has the effect
gf changing the characters generated by certain codes. N can have any value
rom O to 3.

Character Set

Einstein (IS0646)
ASCII

German

apanish

Lk P — O =

The table, below, shows the keys affected

Eey K=0 N=1 H=2 N=3
+ £ ra £] o
$ | -~ t

i 5] +
I Il ' (1] :
i i { A {
i i } U }

—- = :l i ';_'_
+ + + + ﬁ
; ; fi

1
e
F
-
A

The default character set is determined by the setting of DIP switches
inside Einstein 256, and is normally Einstein (IS0646). Should you wish to
change the power-up default character set, refer to the hardware
section, Appendix P, under Technical Specification: TSC256.For complete code

tables refer to appendix B.
Related Keywords:

115

CHR$ CLEAR

CHR3
CHRS (Ch aracter String)
Syntax: CHR$(J)

Purpose: This is a String Function which returns the single character string
whose ASCII value 1s given by ..

Example:
X$=CHRS$(65)

The decimal ASCII value 65 is that of the character A, Therefore the
string A will be stored in X%.

Related Keywords : ASC STR$

CLEAR
Syntax: CLEAR I1,I?

I1 when specified, sets up the topmost location of memory available to
BASIC. 12, when specified, allocates the size of the "stack".

Purpose: This Command clears all variables, arrays and strings from the
system. The top of memory would be set in order to leave space for object
(.0BJ) files (i.e. machine code routines/data). Normally, no space fs
reserved, and the stack size is left unchanged if I2 is omitted,

If 11 1s set above the top of RAM, or set too low, or too large a stack size
{12} 1s set, then a MEM FULL ERROR will ocCur.

The stack 1s normally 256 bytes and cannot be smaller. Normally it would
not be necessary to increase this size unless large numbers of nested FOR
loops, subroutines, and expressions are used. (If a STACK FULL ERROR is
encountered it is usually because subroutines are being ENTERED but not
RETURNED from!).

Examples:

I

CLEAR, 500 sets 300 bytes of stack space.

CLEARETFFF - sets the top of RAM for BASIC programs and variables
ta JFFF,. Thus machine code programs can be placed in
the ared from 8000, up.

CLEAR BAFFF,300 - sets 300 bytes of 'stack space, and the top location
to LAFFF.

Related Keyword : PTR
116

! LU

BN S B S B 1 B Y

11

CLOSE

CLOSE
Syntax: CLOSE 5¥1,5V2,..,5¥n

5V1,5¥2, etc. must be string variable names (but not string array elements)
and are the file descriptor.

Purpose: This is a File-Handling command which performs the following:-

al writes the remaining contents of the appropriate buffers to their
files.

bl stores directory information.

c) closes the files given by the file descriptors in 3¥1 to 3Vm, having
previously been opened using OPEN, CREATE, or APPEND.

A buffer will only be written out if the last operation perfnr@ed on it was
a write. The file descriptors are then set to null strings which makes the
space available for use by variables or other files.

If any of the file descriptors specified is not active {or is an ordinary
string) then a FILE ERROR will be given. (File descriptors are internally
marked to BASIC can distinguish them from normal strings).

If no file descriptors are specified then all files currently open will be
closed. {MNo error is given if there are no files openl.

NOTE: In addition to the above processing, CLOSE induces an automatic
PRINT#O:INPUT#0. This will cause all output and input to go through the
screen and keyboard and the CLOSE command can be used at any time when these
two statements are required (it is shorter.)

Related Keywords: APPEND CREATE OPEN

CLS

CLS tEl;ar Screen)
Syntax: CLS N
Where N has a value of 317 or 40

Purpose: To clear the display screen or send a form feed character to any
other selected output device.

IT current output is to the screen then:-

If N = 40 {1.e.CL540) this will =lear the screen and set up the 40 column
Display.

If N = 32 (i.e.CL532) this will clear the screen and set up the 32 column
Display.

If N is omitted, the screen will clear, leaving the current Display
unchanged.

For any other output device:-

A "form feed" character, (0C), s sent to the selected deyice. See the
section dealing with external devices.

NOTE: The N parameter is retained for compatibility with EBASIC, so0 as to
allow programs written in EBASIC to run. When writing new programs the
SCREEN command should be used to change display formats and modes.

Related Keyword: SCREEN

118

.l ’ II ' |I f ll I l[r Il ' l['

L bl ol ol

H

LI 1 I

CONT COS

CONT (Continue)

Syntax: CONT

Purpose: Causes an interrupted program to resume without clearing the
variables.

May be used after a program has been terminated with a STOP command. During
the "stopped" period, the user may look at or alter variables without

causing any problems, but any attempt to alter the program itself will
result in a CONT ERROR.

CONT may be used to re-start a program which has been halted by SHIFT-BREAK.
This 15 quite a useful aid when debugging a program.

Related Keywords: END RUN STOP

cos {Esjne}
Syntax: COS(N)

Where N is an angle, or a numerical expression returning an angle, given 1in
radians.

Purpose: This is a Standard Function which returns the COSINE value of N.
Examples:

i} X = COS(1.0472)

This gives a value of 0,499998 in X. (1.0472 radians is 6O°)

§4) PRINT C05(0.5236)

The value 0.866025 will appear on the screen. (0.5236 radians is 30°)

§ii) This example shows an entry made in degrees using the RAD function to
convert the angle within the COS function.

PRINT COS(RAD{3D))

The value 0.866025 will appear on the screen.

Related Keywords: ATH DEG RAD SIN TAN

119

CREATE

CREATE
Syntax: CREATE <ufns> ,5V,I

SY is a string variable name (but not a string array element) and is the
file descriptor.

1 15 the random record size (length) and is given as a value in the range 0
to 65535, indicating the number of characters involved.

Purpose: This is a File-Handling Command which creates and OpENsS a new
serial data file as follows:-

a) deletes any existing file with the same name as given in the command.
b} creates and opens a new empty serial data file having the name given in
the command, and identified by the string variable 5V, to be structured into
data records of length I bytes. I is only specified for "random access", if
"sequential access" is to be applied then I is omitted (in fact a random
record length of 0 indicates that sequential access is to be performed).
Example:

CREATE "0:SILLY.DAT",FD$,15

This will perform the following:-

a) creates and opens the file SILLY.DAT on the disc currently in drive 0

(if any file of the same name already exists on the disc it will be

deleted prior to the new empty file being created).

b) assigns FD$ as the file descriptor.

cl sets up for "random access" using a 15 character length record size.

Related Keywords: APPEND CLOSE OPEN

120

| 21] LR | =N 19 | 3) | 2 | | 3 | L. | W L 1 bar il 4. | O | L] il

DATA DEEK

DATA
Syntax: DATA data 1 , data 2 , data n

The items of data [data 1, data 2, etc) may be any of the following types.

a) numeric

b) strings in quotes.

¢) strings without quotes, providing there are no Jeading spaces or
separators.

Purpose: This statement holds items of data required within a program. It
f5 used in conjunction with the READ statement.

Any number of DATA statements can be used within a program, each containing
as many or as few items as are convenient

DATA statements may appear at any position in a program but will be read as
though they were all in one block.

They are ignored when encountered during the running of a program in the
same manner as REM statements.

The SEPARATOR between items of data is normally a comma (,) but this may be
modified by use of the SEP command. (This will also affect INPUT and READ
statements within the same program).

Example:
DATA 6, "NO", YES

Related Keywords: READ RESTORE

DEEK Double Peek

Syntax: DEEK(I)

I must evaluate to a number in the range 0 to 65535.

Purpose: This is a Machine Code related command which returns an integer in
the range (0 to 65536) which represents the contents of the memory locations
given by I and I+1. In effect it is a two byte memory PEEK. [The byte I+1
is taken to be the most significant byte).

Example:
Suppose location &4000 contains &C4 (least significant), and &4007

contains &06 {most significant).
PRINT DEEK (&4000)

This would display an integer of 1732 (i.e. &06C4) on the screen.
P ey

contents of location &4001
contents of location &4000 ——m8

RBelated Keywords: DOKE PEEK POKE

121

DEF FN

DEF FN {(Define Function)

Syntax: DEF FN V1(V¥2) = E

V1 is the name given to the function and canm be any legal variable name
(numeric or string) and is usually known as the identifier. The value of V1
must be of the same "type" as the result of expression E.

V2 is a "dummy variable" which corresponds to the wariable used within the
function and may be numeric or string.

E is a string or numeric expression which contains the variable V2,

Purpose: DEF FN defines a fumction in a program which is to be used in that
program. The expression E contains the function definitions and must
contain the dummy varjable V2. The variable V1 identifies the functions.

On encountering FN VI1(N) in the program the value N is passed to the defined
function as the dummy variable. The resultant value of the expression E is
returned into FN Y1{N).

Having defined a particular function with DEF FN it may be called up at any
future point in a program as FN V1(N) see related word FN.

Example:

10 DEF FN B(X) = X+3
T ¥ = FN B(6)

The function B(X) is defined in line 10.
In Tine 100, & 1s passed to the defined expression ¥+3 as the dummy
variable ¥ and hence Y takes the value 9.

If & function call is made before the appropriate DEF FN statement has been
made a FN DEFN ERROR will occur.

Related Keyword: FN

122

e o

RN LR A R U U IR (A e e e e

DEG DEL

DEG (Degrees)
Syntax: DEG(N)
Where N is given in radians,

Purpose: This is a Standard Function which converts the number expressed in
radians given by N, to degrees.

Example:

DEG(0.523604) - returns a value of 30 degrees,
Example:

PRINT DEG(0.523604)

This will cause the value 30 to appear on the screen.

Related Keywords: ATN COS RAD SIN TAN

DEL (Delete)

Syntax: DEL L1,L2

Where L1 and L2 are given as line numbers of a program.
L1 will default to 0 if not specified.

If L1 is larger than L2, or if L1 is larger than the largest 1ine number of
the program, a RANGE ERROR will occur.

Purpose: This is a System Command which deletes all lines from a program in
the range of L1 to L2.

Examples:
DEL 100,199
This will delete all program lines with numbers from 100 to 199 inclusive,
DEL,155
This: will delete all Tlines up to 155 inclusive (value of L1 omitted
therefore defaulting to 0).

Related Keyword: LIST RENUM

123

DIM

DIM {Dimension)
Syntax: DIM <array name> (I1,12,13..,In)
The array name can be either a numeric or string variable.

I1,12,13 are numeric expressions, known as subscripts, in the range 0-65535
and represent the number of elements in an array.

If an array is not dimensioned it is assumed to have a maximum value of 10
for each subscript (dimension) which is referenced., Therefore if subscripts
are less than 10 the DIM statement may be omitted.

An array must only be dimensioned once in a program. If dimensioned more
than once a DIMENSION ERROR will occur.

Purpose: This is used to reserve storage space for numeric or string arrays,

An array with only one subscript is known as one dimensional.

ALL)

An array with two subscripts is known as two dimensional.

A(I1,12)

An array with three subscripts is known as three dimensional.

A(I1,12,13)

Each subscript represents the maximum number of elements of each dimension
in the array. EBASIC will support multi dimensional arrays, the limit being
determined by the amount of memory available at any one time.

Several arrays may be dimensioned in one DIM statement using a comma as a
separator,

DIM A(IT,I2), B(I), C(I1,12,13) etc.
Examples:
DIM A({50)

Defines array A as having one dimension with storage for 51 elements (0 to
50).

124

DOKE DOS

DOKE Double Poke

Syntax: DOKE 1,I1,12,..,In

Purpose: This is a Machine Code related command which places the values of
the expressions I1,I2 etc. into memory, starting at the location given by I.
Each expression will be placed into TWO bytes of RAM, the first byte being
the least significant byte, the second being the most significant byte.
Example:

DOKE 16384,5764

——address of least significant byte.
6764 is equal to A1684 (HEX) therefore &84 (least significant byte] is
placed into location &4000 (HEYX value of 16384), the first byte of memory,

and &16 (most significant byte) is placed into location &4001 (second byte
of memory).

Example:
DOKE &5100,477,51234

This places &77 into location &5100,400 into &5101 ({.e. the 0O preceding
the 77 in HEX format), 434 into 45102, &12 into &5103.

Related Keywords: DEEK PEEK POKE

D05 (Disc Operating System)
Syntax: DOS

Purpose: This is a System Command and is used to transfer control to the
"Disc Dperating System”.

Usually used in "Direct Mode™.

Related Keyword: MOS

126

DRIVE ELLIPSE

DRIVE (Disc Drive)
Syntax: DRIVE N

N is specified as a number (0 or 1) depending on the number of drive units
available within individual systems.

If the drive specified in J is not available on the system a DRIVE SELECT
ERROR will be given.

Purpose: This command sets up the default disc drive as specified by drive
name for any subsequent access to a disc.

Example:
DRIVE 1

This selects drive 1 as the default drive.

Related Keywords: DIR ERA LOAD REN SAVE

ELLIPSE
Syntax: ELLIPSE x,y.R,T,z,a,b

Purpose: This command draws an ellipse or a circle depending on the values
of the parameters given.

X,¥ are the co-ordinates of the centre for the ellipse and can have values
in the range -32768 to +32767.

R is the value of half the horizontal axis of the required ellipse.

T is a qualifier and is given by the ratio of the two axes as follows:-
| EEETIEAL A;I%
HORIZONTAL

IT T is omitted it defaults to 4/3 and a circle of radius R is drawn (owing
te the aspect ratio of the VDU screen being 4:3).

128

|LI .I-I | 5 Y . % Y YUY Bl R B IR IRY O kD

Ll

oMM

WOTE: The aspect ratio of 4/3 is true only in screen modes O and 1, and in
£25 lines. The default value is retained for compatibility with Einstein
programs. For other screen modes, and 1ine standards, the value for T is

chown in the table below.

Values for T to give true circles.

Screen mode T (525 lines) T (625 lines)
] 1.167 4/3 (default)
1 1.167 4/4 (default)
2* not applicable not applicable
3 0,58 0.67
4 0.58 0.67
- 0.58 0.67
[0.58 0.67

* E11ipse has no meaning in screen mode 2. {80 column/text only}.

The value of z is a number in the range O to 5 which indicates the type of
1ine in accordance with the table given below. (1f omitted z defaults to 0).

Continuous line.

continuous unplot (i.e. 1ine drawn in background colour].

Dotted line, 2 dots on 2 dots off.

Dashed 1ine, 4 dots on, 4 dots off.

Dotted-dashed 1ine, 10 dots on, 2 dots off, 2 dots on, ¢ dots off
Dashed-dotted 1ine, 2 dots on, 2 dots off, 2 dots on, 10 dots off.

L P — D
[[R (N B |

s and b are start and end angles which indicate where the drawing of the
e1lipse should begin and end. These are aptional. The start and end angles
are specified in radians and are numbered in an anticlockwise direction from
0 to the right hand horizontal axis up to 2 pi radians for one complete
reyvolution, the values may be specified as numbers or an expression in terms

of pi.
Examples:
ELLIPSE 100,100,60,1,0,1,0.25

If a or b are given as negative values the start and end points will be
joined to the 'x,y' point (centre) with a line.

ELLIPSE 100,100,60,1,0,-1,0.25
Example:
ELLIPSE 100,100,50

& circle of radius 50 is drawn with its centre at co-ordinates 100,100 (T
defaults to 4/3 and z to a continuous line, @ and b being omitted to
produce a full circle).

Related Keywords: DRAW ORIGIN PLOT POLY UNPLOT

129

ELSE END

ELSE
Syntax: IF =condition> THEN <statement> ELSE =statement>

Purpose: This command is used in conjunction with the IF - THEN statement to
provide an alternative course of action.

Example:
IF X = 10 THEN 100:EL5E 50

If x equals 10 then execution is transferred to line 100. If x does not
equal 10 then the program branches to line 50.

Refer to the IF statement for further information on the use of ELSE.

Related Keywords: GOTO IF THEN

END End of Program

Syntax: END

Purpose: This command is used in deferred mode i.e. as a line of a program,
This command terminates the execution of a program.

It is not strictly necessary when the end of a program coincides with the
highest 1ine number and in such cases can be omitted.

Related Keywords: CONT STOP

130

| S 4 A ¥ A S % % % A % (N | 4 B X % B L B % G A A

EOF

EOF (End of Filel
Syntax: <statement> EOF <statement>

Purpose: This command is used in relation to File Handling and invokes a
specific action following detection of the end of a file during processing.

EOF 45 used within the following statements.

ON EOF GOTO “Line No®
ON EOF GOSUB "Line No"

Either of these two statements could be used in a program involving file
handling, If an "end-of-file" is detected then a GOTO/GOSUB 15 made to a
particular routine which would carry out a predetermined course of action.
The last statement of this routine should direct execution back into the
main program. Execution would then continue from the statement immediately

following the one which detected the "end of file®.

When either of the two statements are used, an internal flag is set in order
to activate the above procedure. :

OFF EOF 1is used to turn off the ON EOF mode. Any subsequent end-of-file
encountered will then cause an END OF TEXT ERROR to be displayed. However,
when a program "ends" in the normal way; the ON EOF is automatically turned

off.

In this example any “end-of-file" detected after Tine 40 would cause a
branch to a routine starting at line 120. This routine would then carry
out a predetermined course of action in respect of the "end-of-file"
before returning execution to the main program.

Related Keywords: GOTO GOSUB OFF ON ERR

131

ERA ERL

ERA (Erase)

Syntax: ERA “<ufn>"

Plxrrnse: This is a Disc Command which will erase the file, given by
filename from a disc in the specified drive (See Chapter 13 for file
hand1ing conventions).

If =filename» does not exist then a NO FILE error will be given.

If =filename= 1s a "locked" file then a FILE LOCKED error will be given.

If the write-protect of the disc is in operation a DISC LOCKED error will be
given,

The default drive may be changed or re-selected by use of the DRIVE command.
NOTE: Wildcards (7 and *) are not allowed in BASIC.
Related Keywords: DIR DRIVE

ERL (Error line number)
Syntax: ERL
Purpose: This function 1s used in error handling routines and returns the

line number at which the last error occurred (see Chapter 11 for further
information on error handling). 0 is returned if no error has occurred.

Example:
10 PRTNT "DOS"

The spelling mistake in 1ine 10 would generate a SYNTAX ERROR. ERL would
now contain 10 and PRINT ERL would then display 10

Related Keywords: ERR ERR$OFFON
132

L9 | [- | N | - W | | o LS

ERR ERRS$

ERR (Error)
Syntax: ERR
Purpose; This command returns the value of the last error generated.
Example:
PRINT ERR
This will display the value of the last ervor generated.

ERR can also be used in conjunction with the ON command as follows:-

ON ERR GOTO L
ON ERR GOSUB L

Where L is a 1ine number.

For further information relating to ON ERR refer to Chapter 11, Error
Handling Within BASIC.

Related Keywords: ERL ERR$ GOTO GOSUB OFF ON

ERR$ (Error String)
Syntax: ERR$

Purposes: This function is used in error handling routines and returns the

error string message, without the word WERROR", corresponding to the last
srror which occcurred, Refer to Chapter 11 for further information on error

handling.

Example:
10 PRJNT "ONE"

4 SYNTAX ERROR is generated in line 10 due to the incorrect spelling of
PRINT.

PRINT ERRS will now display 'syntax’
Related Keywords: ERL ERR ON ERR

133

EVAL EXP

EYAL (Evaluate)

Syntax: EVAL(<string expressions)

Purpose: This is a Standard Function where the string expression is
calculated as if it were a numeric expression and returned as a numeric
value.

The syntax of string expressions must be correct as a numeric expression
otherwise a SYNTAX ERROR will occur.

Example:
A = EVAL{"10*3+4")

10*3+4 is a string expression but s treated as if it were a numeric
expression and the value 34 is returned into A.

Related Keyword: VAL

EXP (Exponent)
Syntax: EXP(N)

Purpose: This is a Standard Function which raises the exponential, e, to the
power given by N.

If N exceeds 87,34 an OVFL ERROR (overflow error) will occur.
e has the value of 2.71828.
Example:
X=EXP({12)
This will raise e to the power 12 (i.e. EIEJ and store the result 162755

in X

Related Keywords: ATN LN LOG
134

P!

% U N BN S\ DT Y DU N RN N BN N B Y B Y B N D % Y | DT Y B W BN N BN D BN N NN Y RN N

14

FILL

FILL
Syntax: FILL x,y.dJ

% and y are the co-ordinates of a required point and can be in the range
-32767 to +32767.

J can be a value in the range 0 to 15, each number representing a colour as
defined by the palette command. The default palette is shown in appendix C.

Purpose: This is a Graphics Command which will fi11 in colour J an area of
the screen which has its perimeter drawn in a foreground colour and which

encloses the point x,¥y.

This command will fill in foreground if point x,y is background or 1in
background if the point is foreground. If J is omitted the colour of the
£111 will be the current graphics colour for the fi11 type (i.e. background
or foreground) unless J is declared.

Example:

10 REM FILL

20 BCOL O

30 SCREEN1:GCOL 7,0:0RIGIN 128,96
40 ELLIPSE 0,0,60:FILL 0,0

50 GCOL,8

60 POLY 6,0,0,45,,1:FILL 0.0

This example draws a cyan-coloured disc, a&nd then draws a red hexagon
inside it.

Example:

e

o

- x2,Y2

135

FMT

In the example illustrated:

If point K.Y is specified then the command will f£i11 the given polygon to
1ts boundary,

If point X1,¥1 is specified then the command will fill the screen outside
the polygon.

If X2,Y2 is specified then the command will fi11 the associated polygon
and then spill out, because the shape is not fully enclosed, and i1l the
remainder of the screen.

NOTE: A 'STACK FULL' error may occur when FILLing around text. This is
caused by overflow of the 'FILL' stack.

Related Keywords: DRAW ELLIPSE GCOL ORIGIN PLOT POLY TCOL UNPLOT

FMT [Numeric Output Format)
Syntax: FMT J1,J2

Purpose: This command 15 used to format numeric output for PRINT statements
and STR$ functions.

J1 gives the number of figures to be printed in front of the decimal point,
and JZ the number of figures to be printed after the decimal point. The sum
of J1 and J2 must not be greater than 8 (maximum precision of the system is
only 7 significant figures) otherwise a QTY ERROR occurs.

If the actual number of figures in front of the decimal paint is less than
that specified by J1, then leading spaces will be printed,

If the number of figures in front of the decimal point is greater than that
specified by J1, then the output defaults to “scientific notation®,
Scientific notation may be forced by setting J1 to 15.

If the number of figures after the decimal point is Tess than that specified
by J2, then trailing zeros are printed up to the required number of figures,

If the numbers of figures after the decimal point is greater than that
specified by J2, the last figure which complies with J2 will be rounded up
or down accordingly (see examples)

Kormal output format is to 6 significant figures and scientific notation is
invoked if the magnitude of a number is greater than 1E6 or less than 1E=2.
Trailing zeros are always suppressed in normal output.

On conclusion of processing involved with a particular FMT command, normal
output can be restored by use of FMTD,O0.

136

LB B & B S ' 4 4 S & B € A AL | 4 A A

FN

Examples:
FMT4,2:PRINTS692.347 - displays as 5692.35

FMT4,2:PRINT347.6932 - displays as 347.69

FMT3,2:PRINT 5678.346 - defaults to a display of 5.67B35E+03
FMT3,4:PRINT543.45 - displays as 543.4500

FMT15,2:PRINT 567.9876 - displays as 5.68E+02

If the sign of a number is given, it is not counted with the number of
figures but appears in the leading space at the start of the entire number.

Examples:
FMT3,3:PRINT-1.73205 - displays as - 1.732
FMT3,3:PRINT-42.763 - displays as - 42.763

Related Keywords:

FN IEunct"l ':'ﬂ]

Symtax: FN U]EFE]ﬁE_

Purpose: This command is used with DEF to provide the facility for creating
functions not normally contained within the BASIC. For further information
see DEF command.

Related Keyword: DEF

137

FOR

FOR
Syntax: ¥ = N1 TO N2 STEP N3

Purpose: This statement sets up a Toop within a program to repeat a sequence
of operations, It s used in conjunction with the TO, STEP and NEXT
statements,

¥ 15 the CONTROL VARIABLE which must be a numeric yariahle.

The values, or numeric expression string values, for N1,N2, and N3 have the
following functions.

N1 is the INITIAL VALUE from which V starts the loop.
We 1s the LIMIT VALUE of ¥, which, when passed, ends the loop.

N3 is an opticnal STEP VALUE which is the amount by which ¥V is incremented
on each cycle of the loop. If "STEP N3" is omitted then a step value of +1
15 assumed,

The FOR statement indicates the beginning of the Toop. The NEXT statement
indicates the end of the Toap. The MNEXT statement is followed by the
control variable to 1ink it with the relevant FOR statement .

The program loops between these FOR and NEXT statements. On reaching the
NEXT statement V is dincremented to the next value and program execution
jumps back to the FOR statement. The loop is repeated until V has
incremented past the value of N2

Any program 1ines between the FOR and NEXT statements are executed on each
cycle of the Toop.

Example:

10 FOR I =1 T0 10 STEP 3
20 MEXT I

The control variable, I, starts at 1 {initial value) for the first Toop
and then increments by 3 (step value) for each repetition of the Toop
until the 1imit value of 10 15 exceeded.

I0FORI =1T0 10
20 NEXT I

In this case the step value has been omitted and therefore a value of 1
will be assumed. Thus I will start at 1 and increment by 1 until it
exceeds 10.

The necessary operation statements of the loop immediately follow the FOR
statement,

138

Example:

W0 FORI =1
20A=1+3
30 PRINT A
40 NEXT I

TO 10

In this instance the expression A=I+3 is evaluated and displayed for each
value of I from 1 to 10 (I increments by 1 after each evaluation).

If the control wvariable is missing off the NEXT statement, then it 1is
assumed to be linked with the previous FOR statement.

Example:

I0FOR I =1T0 10
Eﬂ PRINT "RED"

0 KEXT

I 15 not needed in line 30 to complete this.
Nested Loops:

FOR-TO-NEXT statements can be nested (i.e. one loop contained within
another).

In "nested" loops the NEXT statement takes on the following format.
NEXT V1,¥2,..,Vn

This 15 the equivalent of:-

NEXT V1:NEXT V2;..;NEXT Vn

Example:

This example will print out all the values of I+J using values of I from O
to 7 and values of J from 5 to 19, The processing will be executed in the
folTowing manner.

134

FOR FIRST VALUE OF I=0

I+ J= K
0+ 5= §
0+ 7= 7
0+ 9= 9
0+ 11 =11
0+13=13
0+ 15 =15
0+ 17 + 17
0+19 =19

=
]
=
=
=)
=
=
L=
-
e =]
|
=
m
=
;M
—
]
e

I+ 4= K
1+ 6= &
1+ 7= 8
1+ 9 =10
1+ 11 =12
1+13 =14
1+ 1% =14
1+17 = 18
1+ 19 =20

This process is repeated for each value of I wntil all the required
results have been printed.

Example:

The following example illustrates how documentation often presents the
listing in a format which indicates the nested loops.

—#0 FOR L =1 TO 10

—u (] FOR X =0 TO 11
il FOR ¥ = 1 TD X+13
40 PRINT CHR$(170)+MULS(CHRS(203),16)
+CHRE(170)
a MEXT Y
B0 PRINT MUL%(CHR$(32),18)
70 FOR ¥ = X+15 TO 40
B0 PRINT CHR$(170)+MULS(CHRS(203),16])
+CHR$(170)
80 NEXT ¥
100 MEXT X
—— 110 HEXT Z
120 EMD

140

]] 1 8 L]) -

LA

| L L (| L 1 B L

=i

Crossing

Although loops can be nested they must not be allowed to cross over each
other.

—10 FOR X
20 ===
30 =---
40 FOR ¥
50 ===
60 NEXT X
70 ===
80 NEXT Y

The format shown above would not work and is an example of bad logic in
setting up the loops.

NOTE: If the value of the control variable V in the NEXT statement does not
correspond to an active FOR loop, then a NEXT ERROR will be given.
If the control variable V is omitted from the NEXT statement, then the last

FOR statement is assumed to be the one required.

There 15 no 1imit to the amount of nesting allowed with loops other than the
capacity of the memory to deal with the necessary program operation.

Related Keywords: TD STEP NEXT

141

GCOL

GCOL (Graphics_Colour)
Syntax: GCOL J1,J2

Purpose: This is a Display Command which selects the colour of graphics
displayed on the screen according to the values of J1 and J2.

J1 represents the foreground colour (i.e. the colour of the pixels forming
the character, or shape) and J2 the background colour (the colour of the
surrounding pixels). J1 and J2 must lie in the range 0 to 15, each number
corresponding to a particular colour as defined by the palette command.
{The default palette is given in appendix D], If no previous GCOL command
has been given, then J1 will default to 15, and J2 to 4. If the palette has
not been re-defined, these will correspond to white and dark blue
respectively.

The command operates in all screen modes, ecept screen 2 (which is purely
text mode). In screen modes 3 to 6, background colour (J2) has no meaning,
and produces no result, as pixels are plotted in foreground only. However,
JZ, can be specified, for convenience, if required,

lscreen Mode | Foreground Background Comments

0 Graphics? 32col.
Einstein compatible

1 Graphics? 40 col.
Einstein compatible

2 No graphics in this mode - text (80 column) mode 2 only

3 X Graphics 6, 32 col.
X text

4 X Graphics 6, 40 col.
X text

5 Graphics 6, 64 col.
text

6 Graphics 6, BO col.
text

Example:
GCOL 10,6

Any graphics, in screen modes 0 or 1, with the default palette will appear
in Dark Yellow foreground on a Dark Red background. In screen modes 3 to
&, only the Dark Yellow foreground will appear, while screen mode 2 will
produce no result (text mode only)!

NOTE :

This command only directly affects the graphics pixels as they are plotted
on the screen and/does not affect the overall backdrop colour of the screen.

Related keywords: BCOL SCREEN TCOL

142

| 8 S ¥ O LAY | S § S % % T 4 ST 4 AT 4 B 4 S 8

Al

UL 4 B LA % 4 B % A 4

1)

GOSUB

GOSUB (Go to Subroutine)
Syntax: GOSUB line number

Purpose: This transfers execution of the program to a subroutine which
starts at the line number specified

If Tline number 45 not specified, or does not exist, a BRANCH ERROR will
QCCur.

Execution continues from the specified line number onwards until a RETURN
statement 15 encountered, whereupon execution 15 returned to the line
immediately following the original GOSUB statement,

Example:

10 PRINT “NAME:"

20 GOSUB 100

30 PRINT “ADDRESS:“ =
40 GOSUB 100

50 PRINT "TELE:" =
60 GOSUB 100

70 PRINT “OCCUPATION:"a—
80 GOSUE 100

90 END s—————
100 FOR I =1 T0 16
110 PRINT " "
120 MEXT I
130 PRINT

140 RETURN
This program prints out the following format:-

OCCUPATION:

Limes 20, 40, 60, and 80 cause a branch to the subroutine contained within
limes 100 to 140, This subroutine carries out the repetitive process of
printing the broken lines between each of the titles. Line 140 returns

execution each time to the lines immediately following the last
execyted GOSUB.

Related keywords: GOTO POP RETURN

143

GOTO HEX$

&0T0
Syntax: GOTO Tine number

Purpose: This transfers program execution directly to a specified line.
(i.e. creates a BRANCH).

If the T1ine number is not specified or, does not exist, then a BRANCH ERROR
will occur,

Example:

I01=0
20 PRINT I

[rSU I = I+]
40 GOTO 20
B0 END

This program prints the value of I in line 20 and adds one to it in Tine
30. Line 40 causes program execution to return to line 20. Try running
the program. It should print out 0,1,2,3,4 =--- etc. until the program is
terminated by pressing SHIFT-BREAK.

Related Keywords: GOSUE IF ON THEN

HEX$ (Hexadecimal String)
Syntax: HEX$(I.J)

Purpose: This command returns a Hexadecimal string which corresponds to the
number given by I (in decimal).

J dictates the number of characters to be returned in the Hexadecimal string
and must be in the range 1 to 4, If J is omitted a value of 4 is assumed.

The Hexadecimal number will be "padded" with leading zeros if necessary.

If the value of J is too small for the HEX number to be returned, then only
the J least significant digits will be returned.

Examples:
XS5=HEXS (1234) - returns the string "04D2"
X5=HEXS (100,2) - returns the string "64"
X5=HEXS (4708,2) - also returns the string "64"
{only the two least significant characters are displayed as dictated by
the value of J being 2).

Related Keyword: BINS$

144

The MGE {merge) command is used to replace the section in the program and
bring the “non-held" part back "in view".

The final result when listed then appears as below with the original held
cection now in its new position.

10OFORI=1T0S5
20 PRINT ®wn;

30 MEXT I
MOFRI=1T05
80 PRINT "#

90 NEXT 1

110 PRINT B
20 NEXT B

NOTE: It is important that the section renumbered 1s not renumbered to
lines that exist within the non-held sections. If in the above example
the held section was renumbered as RENUM 70,10 then two lines could be
created for each line number 70, 80 and 90!

2. To append another program.

Starting with the following initial program,

IWOFORI=1T05
20 PRINT I
30 MEXT I |

The whole program 1s held using HOLD,30.

The second program can then be Toaded without affecting the held program.

IOFORI =86 TOD 11

20 PRINT 1
30 NEXT I

The secor program is then renumbered using RENUM such that its line

numbers . greater than the last line number of the held program.
40 FOR . = 6 10 1

50 PRI S 1

B0 MNE" [1

The IGE command is then used to bring the two programs together giving
the ‘ollowing result.

I0DFORI=1T06
20 PRINT I

30 NEAT [

0 =6 TO
50 PRINT I
60 NEXT I

146

1SN Y B) S R

1

Ll

| % O N B U Y B Y B Y

13

IF

CAUTIONARY NOTES:

When ?enumbering, care must be taken in the selection of the new line
numbers. Any duplication of line numbers will result in BOTH lines being

listed in the final program.

The line numbers of the "non-held" part of the program are not affected by
the renumbering process, but any line number references following GOTO,
GOSUB, RUN, THEN, ELSE, RESTORE, contained within the non-held Tines will be
altered accordingly. (This is obviously a most necessary and useful facility
when moving sections about within one program but care should be exercised
in respect of this when adding a second program).

HOLD is also used in conjunction with CHAINING and SEMI-CHAINING of
programs. Note also that RUN and CHAIN will restore a HELD program.

Related Keywords: CHAIN MGE RENUM

IF
Syntax: IF =condition> THEN <statement> ELSE =statement >

Purpose: This allows the evaluation of conditions so that a choice of
axecution can be made, depending on whether a condition is TRUE or FALSE
({.e. it is a Conditicnal Branch instruction). The IF command is used in
conjunction with the THEN and ELSE commands.

THEN statement is the statement executed 1f the condition is TRUE., The ELSE
options being ignored in this case.

ELSE statement is the statement of execution if the condition is FALSE.
In this case the THEN options are ignored. ELSE is optional and quite often
hecomes a redundant part of the statement, in which case it is omitted.

Example:
IF A=3 THEM PRINT "YES": ELSE PRINT "NO"

If A does equal 3 the PRINT "YES" becomes operative (i.e. the TRUE
statement],

1f A does not equal 3 the PRINT "NO" becomes operative {(1.e. the FALSE
statement).

F156's must not be nested but the following does however work .

IF...THEM. . .ELSE IF,..THEN...ELSE...

147

INCH

Yariations:

IF condition THEN L1 ELSE L2

L1 and LZ are line numbers to which execution will transfer according to
TRUE or FALSE conditions. The following format will also produce the same
result.

IF condition GOTO L1 ELSE L2

Examples:

IF B=7 THEN 70 ELSE 120

IF B=9 GOTO 90 ELSE 50

ELSE 1s optional in both the above cases and if omitted execution will
transfer to the next line of the program if the condition i1s FALSE.

NOTE: The formats may be mixed, replacing either of the 1ines, L1 and L2,
with a statement but the following points must be observed:

i} If L1 1s replaced by statements there must be a separator (:)} between
the last statement and the ELSE.

i1} A line number must always follow the GOTD if that format is used.
Examples:

IF C=5 THEN PRINT "YES":ELSE 90

IF D=9 GOTO 120 ELSE PRINT "NO"

IF A=20 THEN 70 ELSE PRINT "WHITE"

Related Keywords: ELSE GOSUB GOTO THEN

INCH [Input Character)
Synmtax: INCH

Purpose: This is a Standard Function which waits for the next finput
character and then returns the ASCII value of that character.

Example:
PRINT INCH

This will cause the machine to await the next input character and then
display its ASCII value on the screen.

Related Keywords: INCH$ INPUT KBD KBDS

148

F B e 11 1|

(3 &

INP INPUT

INP (Input)
Syntax: INP(J)
Where J represents the address of an INPUT/OUTPUT port.

Purpose: This is a command relating to direct input from any 1/0 device.

The value returned by this command will be a number in the range 0 to 255
For the addresses of the various ports, refer to appendix L.

Example:
A% = INP(&32)

This will read the current value at the user INPUT/OUTPUT port and place
it in A%,

Related Keywords: OUT WAIT

INPUT
Syntax: INPUT "Prompt" sV1.¥2,...Vn

The Prompt is optional, but if used must be a string in quotes followed by a
semi-colon(;).

V1,V2, etc are numeric or string variable names, strings, or strings within
quotes. When more than one variable i5 used they are normally separated by
a comma, but this can be changed by previous use of the SEP command {page
213).

Purpose: This statement is used to input data from the keyboard during the
execution of a program,

If the "Prompt" is omitted then BASIC will introduce its own prompt in the
form of a question mark (?), unless the system is in "immediate" mode, in
which case no question mark will appear. This facilitates the input of a
Tine without any unwanted characters appearing before it, Alternatively, if
the prompt is declared as an empty string the "?* will not appear on the

SCreen.

If the number of entries typed in exceeds the number of variables listed im
the INPUT statement, then only the first values entered will be used and the
message EXTRA IGNORED is displayed.

INPUTH

If the number of entries typed in is less than the number of wvariables
listed in the INPUT statement, then a further prompt {?) will appear.

If a string 15 entered when numeric data is expected, then the non-numeric
data will be ignored; 0 will be assumed if the first character of the string
15 non-numeric.

Example:
10 INPUT "NAME,STREET,HOUSE NUMBER ";NAMES,STREETS,N

The INPUT statement causes execution of a BASIC program to be interrupted
and then it waits until the required data is input from the keyboard.

Example:

10 REM PROGRAM TO CALCULATE COST OF ITEMS.
20 IMPUT “COST OF ONE ITEM IN PENCE ";I

30 INPUT “NUMBER OF ITEMS ";N

40 PRINT “TOTAL COST IS ";I*N

50 GOTOD 20

This simple program calculates the cost of a quantity of 1tems, knowing
the cost per item.

It 11lustrates a use of INPUT. The program does not commence execution

until variables I (cost of one item) and N (number of items)} are typed in
from the keyboard; a result then appears on the screen.

Related Keywords: INCH INCH$ INPUT# KBD KBDS PRINT PRINT#

INPUTE (Input Device Number)
Syntax: INPUTHJ

Where J gives a "device number" assigned to a device and in the range 0 to
254.

Purpose: This statement assigns a new fnput device {eg. serial port)
indicated by the value of J.

A1l input statements, such as INPUT and INCH$, will be received from the new
device selected by J until another INPUT# statement is encountered to change
the device selection.

When a program ends or aborts, either through an error or as directed from
the keyboard, the input device reverts back to the keyboard (i.e. device 0],

[f INPUT# 15 used in direct mode the corresponding input statement must
appear in the same line,

151

The following two input devices are currently assigned within the BASIC

Tanguage provided.

DEVICE DEVICE NUMBER

—_—

KEYBOARD/ VDU 0
PRINTER 1
SERTAL PORT 2
(R5232)

Example:
INPUT#Z

ATl input following this statement in a program will be received from the

serial port.

INPUT# can also be used in the same manner as a normal INPUT statement but
the “device number" must be followed by a semi-colon (;) so as to
distinguish the remainder of the statement. INPUT# may NOT contain

prompts.

Example:
INPUT#2;X

Example:

10 PRINT#

20 INPUT#2;X

30 IF X= 0 THEN END

40 FORI = 1 TQ X

50 INPUT AS: PRINT A%

60 NEXT I

70 INPUT#D

80 PRINT#0;"D0 YOU WISH TO ZONTINUE "5 :Y$=INCH$
90 IF ¥$="Y" THEN 10 ELSE END

This program illustrates the use of INPUT# and also PRINT#. Data must be

provided externally to the RS23? seria] port in order to run this program
successfully,

X represents the number of items of data tg be read. First X is read,

then data is accepted from input device 2. This data is printed, as it is
read, on the printer (output device 1).

After X items have been read both input and output revert back to device 0
(keyboard and YDU screen) for further instructions from the user.

152

& T T T T

LT 11

INT

USE WITH FILES

Syntax: INPUT#SY,R:¥ variable Tist

Purpose: This command takes input from the file given by the file-descriptor
sV, starting at the first character of the record number given by R in the
file,

The variable 1ist given by ¥V is as for the normal INPUT command. Items are
assigned to the variable names given in the same way.

If R 1s omitted the file will be read from the last point reached, or from
the beginning if it has just been opened (same application as in PRINT#).
The format of the command is then:

INPUT#S5Y;

Following this command all subsequent statements relating to dnput will

attempt to access the file specified by 5V (i.e. INPUT, INCH, INCHS, INCH3N)
until another INPUT# OR CLOSE is encountered.

As before, the V can be omitted giving the following format(s).
INPUT#SV,R

or

INPUT#SY

Both these versions will set up the file specified by 5V for input, and all
subsequent mormal INPUT statements will access that particular file.

Related Keywords: IMCH INCHY PRINT PRINT#

INT [Integer)
Syntax: INT(N)

Purpose: This is a Function which returns the largest INTEGER value less
than or equal to the value given by N.

Te:
X=INT(4.62132) - returns a value of 4
¥=INT(-4.62132) - returns a value of =5
(Note the effect on negative numbers).

It 15 often useful to have a whole number, “rounded up" for some
calculations, It is done by adding .5:-

X+INT(Z+.5), which will Teave a whole number in X.
Example:

PRINT INT(9,72513)
The value 9 will appear on the screen.

Related Keyword: MOD 153

IOM

IOM {Input Output Mode)

Syntax: IOM J1,J2

Where J1 is in the range 0 to 15 and J? can take the value 0 or 1,

Purpose: This command is used to set up various input and output conditions,
J1 declares which condition (i.e. which bit of the 2 I0M bytes) is to be set
to the value declared in J2,

12 of the 16 IOM bits have been allocated to particular input and output
options. The remaining 4 bits are left available for future expansion.

Until this command is used all the IOM BITS are set to 1. Thus all the
conditions are operative as specified for when the BITS are set to ON.

IOM Bit Assignment:

Bit 0 (Edit Mode):
When = 1, this gives SCREEN EDIT mode.
When

0, this gives LINE EDIT mode.
Example: [0M 0,0

This invokes LINE EDIT mode only.
Bit 1 (Echo Made):

When = 1, all input characters are echoed to the output device {eg. {nput
from keyboard is echoed to appear on output screen)

When = 0, there is no echg of characters and LINE EDIT mode is automatically
selected regardless of the setting of BIT 0 (otherwise the whole system
locks up).

Example: I0M 1,0

This would prevent echo of characters eg. from keyboard to screen.

Bit 2 {Switch Mode):

When = 1, the system automatically reverts to LINE EDIT made when a program

runs, and back again to SCREEN EDIT mode when the program ends or is
ahandoned.

When = 0, the automatic change of EDIT mode is prevented (i.e. the current
EDIT mode will be maintained before, during, and after a program is run).

Bit 3 (Break Mode):

When = 1, this allows the use of the SHIFT-BREAK keys to dinterrupt a
program, and EQF to indicate an “end-of-file”.

154

Al &1 A1 &I R

l-l'

When = 0, program interruption is not available from the SHIFT-BREAK keys,
and an "end-of-file" will only be indicated by the last block in a file
being detected. (This is useful for reading files that may contain ANY
characters as part of the data eg. "program files".

Bit 4 (Trailing Space Mode):
When = 1, trailing spaces will be printed after any NUMERIC output.

When = 0, no trailing spaces are printed and numbers will run into one
another (in the same way that strings do normally),

Bit 5 (Leading Space Mode):

When = 1, a leading space is printed for numeric output of positive numbers,
or alternatively a negative sign for the output of negative numbers.

When = 0, no leading spaces are printed. The examples below show a
comparision of this effect.

I0M 5,1 IOM 5,0

10 A=456 10 A=456

20 B=765 20 B=765

30 PRINT A;B 30 PRINT A;B

This displays This displays

456 765 456765

Bit 6 (Automatic LINE FEED Mode);

When = 1, this outputs a line feed character whenever a new line is output.
In other words the BASIC thinks it is sending a CARRIAGE RETURN/LINE FEED at
the end of each line. (The Print Head moves to the beginning of the next
line down),

When = 0, this outputs a carriage return only (i.e. Print Head returns to
the beginning of the same 1ine).

The setting of this BIT has NO affect on device 0 (the display screen), thus
normal PRINT statements to the screen are unchanged.

It is useful when set OFF for reducing the size of a file on output, since
the Line Feed code is ignored in input of a file using PRINT#. However,
some files may need the Line Feed code, in which case this BIT should be set
ON.

Bit 7 (Expand TABs):

When = 1, the TAB character is expanded to the required number of spaces
{eg. the comma (,) is expanded to produce a 10 space zone 1in PRINT
statements),

When = 0, the actual TAB character itself 1s output as an ASCII code, and is
then transmitted to the output device in use.

185

Example: I0M 7.0

This TAB character is output as an ASCII code and transmitted to the output
device for interpretation (eg. printers which have no special TAB settings).
Thus the format of the output on a device can be controlled from the
software of the computer.

Bit 8 (Printer Port definition)

When = 0 the printer port is defined as the RS232-C PORT. This is the
default setting.

Bit 9 (Combined output selection)
When = 1, this causes output to the selected output device only.

When = 0 this causes output to device 0 (VDU) as well as the selected
device.

Bit 10 (Printer Echo)

When

1, output 15 to the current device only.

When

0 this causes the PRINTER to "echa" the current output device.
This command is mutually exclusive with I0M bit 11.
Bit N

When = 1 this inhibits the modification of "ESC" and "FF"™ to the VDU when
the VDU "echos" the current cutput device.

When = 0, there is no inhibition of the functions.
This command is mutually exclusive with IOM bit 10,
As A Function:

IOM may be used as a function to return the current setting of any of the
BITS.

Example: PRINT IOM(3)

This will display the current setting of BIT 3 (i.e. either 0 or 1) on the
SCreen.

Related Keywords:

156

1L L 3 4,

| S 4 i 8

% [SLAY | £ 4

L % S ' % S S % A % B A A

11!

KBD KBD$

KBD (Keyboard)
Syntax: KBD

Purpose: This 15 a Function similar to INCH but only scans the keyboard for
input. It does not wait for an input character.

This function returns a value of 0 if no character is input, or the ASCII
value if one has been input.

A useful application of this function (and also KBD$) can be seen in "space
invader" type games where horizontal and vertical movement of an object is
controlled by allocating certain keys for left/right and up/down movement.
The abject appears to wait for a response from the particular keys but
withuutjha1ting program execution (i.e. other objects on the screen continue
to move).

Example:
x = KEBD

This will return the ASCII wvalue of any character, 1input from the
keyboard, in X.

Related Keywords: INCH INCH$ INPUT KBD$

KBD$ (Keyboard String)
Syntax: KBD%

Purpose: This is a String Function which performs in similar manner to INCH$
except that it does not wait for an input character, but will return a null
string if no character is available.

This function is only operative with the computer keyboard, irrespective of
what alternative input device is in use at the time, whereas INCH} responds
to all input devices.

This function can be used in the same format as INCHS bearing in mind the
points of difference indicated above.

Related Keywords: INCH INCH$ INPUT KBD
157

KEY

KEY
Syntax: KEY N, <string expression=

Where N is the function key number and the data s the particular function
to be allocated to that key

Purpose: The KEY command allows the user to program the 8 special "function
keys" labelled FO to F7 on the keyboard, according to individual
requirements.

The key numbers are 0 to 7 in “unshifted" mode (as labelled) and & o 15 1n
shifted mode {i.e. each key can be used for two separate functions)

BASIC reserved words are stored as tokens for efficiency. ASCII characters
can also be stored.

The total storage capacity for all 2 keys is 128 bytes. This can be
allocated to one key or shared between the 16 functions of all 8 keys.

Example:
KEY 0,"LISTGS-

KEY 1,"PRINT CHR$({A) s - This programs function key 1 to print
CHR:(A) when pressed,

KEY 3,"BCOL5:TCOL1S Cr - This programs function key 3 to set
backdrop and text colours when pressed,

KEY 5,"B=58:PRINT CHR$(B) Sn- This programs function key 5 to set
variable B to 58 and then print it.

To display the contents of the function keys use the KEY LIST command.
KEY LIST This will display the contents of all the

function keys on the screen, as shown in
the example display given below.

FO: LISTSH

F1: PRINT CHRS(A)Cn

F2:

F3: BCOLS:TCOL1S S

§a

F5: B = 58:PRINT CHR$(B) O
F&:

F7:

158

LI S I I A I S A ¢ 4 e 4 N € A

1

&

b

shifted functions are shown in Tistings as follows:

sF0:
s5F1:
sF2:
5F3:
sF4:
sF5:
sFh:
sF7:

NOTES

Each time a programmed function key is used, the BASIC statement stored in
the string expression is displayed on the screen. In order to execute the
statement, press ENTER in the usual way.

should you wish to execute the function key immediately when the key is
pressed, the ENTER command must be embedded within the print statement. This
1s done by simultaneously pressing the GRAPH and ENTER keys. The command is
shown in the listing as COg{carriage return).

In & similar way the GRAPH key can be used to embed control codes within
function keys.

The function keys are pre-programmed when the master disc is loaded, or when
any user disc has been configured to define the function keys. See DOS
utilities, Chapter 5.

Related Keywords:

LEFT$ (Left String)
Syntax: LEFT$(string expression ,J)

Purpose: This is a String Function which returns the left most J characters
from the string expression.

Examples:
PRINT LEFTH({"ABCDEF",3)

Ihe 3 Ieftjmust characters of the string will appear on the screen
i.e. "ABC"

AS = LEFTS("XYZLBJ",4)

This will return the 4 left most characters in A$. Thus A% will be
"XYZL™

Related Keywords: LENS MIDS MULS RIGHT$ SCRNS

159

LEN

LEN tLgEgth}
Syntax: LEN (<string expression>)
Purpose: This is a 5tring Function which returns the length of the string

expression as the number of characters, including punctuation marks, control
characters, and spaces.

Examples:
a) PRINT LEN({"HELLOD,AND WELCOME")

This will give a value of 17 which then appears on the screen.
b) PRINT LEN{*AB ,CDE ,X,Y,I")

This will return a value of 18.

Related Keywords: LEFT$ MIDS RIGHTS

160

R UL S Y

LET

LET
Syntax: LET V=E

Purpose: This is used to assign the value of E {an expression) to variable
V. V and E must both either be string or numeric. The word LET is optional

and can be omitted.

INTEGER variables can be assigned to ordinary real variable names. They are
shown with a percent % symbol suffix.

FLOATING POINT expressions can be assigned to INTEGER variable names but the
following points must be taken inte consideration,

a) the result must be in the range 0 to +65535.

b} any decimal part will be lost, Just as if an INT function has been
performed before assigning the result.

¢c) all variables not specified in a program return the value 0 or the
string **, (mul1).

Examples:

LET A=% Assigns a value of 9 to the variable A

LET AA=1+2%3/4 Assigns a value of 2.5 to the variable AA (i.a, the
result of the mathematical expression).

LET TEMPZE=12 Assigns a value of 12 to the integer variable TEMP%

LET B$="YES" Assigns the string YES to the string variable B}

LET NAME3="JOHN" Bssigns the string "JOHN" to ‘the string variable
NAME

C{4)=6 Assigns the value 6 to variable
C(4) which represents the fifth element in the array
R

D3="NO" - Assigns the string "NO" to the string variable D3.

MAME$="FRED" Assigns the string "FRED" to the string variable
NAMES.

A%=PI This would give the same result as A=INT(PI)

Therefore the value assigned to A% would be 3. {P1=3.14159)

Related Keywords:

161

LIST

LIST
Syntax: LIST L1,L2,L3

L1 1s a line number from which the listing will commence and defaults to O
if omitted.

Lz is the number of lines to be listed at ane time and defaults to 15 until
changed by a value in the command,

L3 is the last line number to be listed.
L1,L2,L3, can also be in the form of expressions.

Purpose: This is a System Command which lists the current program to the
current output device.

After L2 lines have been listed there is a pause. The Tisting will continue
when the user presses the space-bar or any key, and another L? lines will be
listed. BASIC always remembers the last value used for L2 and will continue
to use that value until LIST is used with a different L? value,

Any ar all of the expressions L1,L2,L3, may be omitted but if L? or L3 are
specified, either individually or together, then the appropriate "commas"
must be inserted.

Listings may be abandoned at any time, whether paused or not, by use of the
ESC key.

When a listing has paused, the cursor movement keys may be used for editing
purposes and this simultaneously abandons the listing without the use of
ESC. (This is only applicable in screen edit mode). -

LIST may be used as a normal statement within a program. This is useful for
displaying segments of a program listing during execution, and a delay could
be incorporated so as to hold the display on the screen for a short period
of time. REM statements containing titles, and statements containing data,
for example, could be programmed to appear for a short time on the screen at
predetermined stages of execution.

162

! 7y &I EI LT

L

o M &l A M OB B B R

Al

LISTP

Examples:

LIST 300,5,999 - This will list 3 lines at a time starting at line 300
and ending at line 999,

LIST - Lists the whole program.

LI5T,5 - Lists the whole program, 5 lines
at a time.

LIST 100,7 - Lists 7 lines at a time, starting
from Tine 100

LIST 200 - Lists from 1ine 200 using the last
used value for L2 for the number of lines to be
listed at one time

LIST 100,,199 _ Lists from 100 to 199 using the last used value far
L? for the number of lines to be listed at ome time,

LIST,4,299 - Lists 4 lines at a time from the start of the program
to line 299.

LIST,,199 - Llists from the start of the program to 1ine 139 using

the last used value for LZ for the number af lines to
be 1isted at one time.

¥=100:¥=50:LISTX,Y,X+99
- This wil1l 1ist from 100 to 1949, 50 lines at a time.

Related Keywords: LISTP

LISTP (List to fyinter}
- Syntax: LISTP L1,L2,L3

Purpose: This is a System Command which will 1ist the current program to the
printer from line number L1 to Tine number L3.

If L1, L2, and L3 are omitted the whole program will be Tisted.

It is the same as doing PRINT#1;LIST.

During the listing, L2, the 'number of lines at a time' feature incorporated
in the LIST command, 45 ignored and the list is printed continuously up to

line L3.
sfter listing, the output reverts back to device 0 (the monitor)

1f the command is called from within a program, device 1 {the printer] will
remain selected.

Related Keywords: LIST PRINT# PRINT

163

LN LOAD

LN (Logarithm - Natural)
Syntax: LN(N)

Purpose: This is a Function which returns the natural logarithm of the
numeric expression N (Natural logs are to the base a).

If the value given by N is less than, or equal to, zero a QTY ERROR occurs,
Example:
PRINT LN(2)

The value 0.693147 will appear on the screen.

Related Keywords: EXP LOG

LOAD

Syntax: LOAD ‘“<ufp>"

Purpose: This is a System Command which loads files/programs from the disc
into the computor's memory. If a file is not present on the target disc then
a NO FILE ERROR will be given.

If the drive name is omitted from within the file the current default
drive will be assumed. The default driye is initially set up as 0 but can
be changed using the DRIVE command,

If the file type is not declared within file then XBS will be assumed.
Loading Basic Program Files

When loading BASIC program files any existing BASIC program in memory is
deleted but variables are not destroyed.

Example: LOAD "1:PROG.XBS"

This will load the BASIC program file whose name is PROG from the disc in
drive 1,

Example: LOAD "PROG"

This will load the BASIC program file PROG.XBS from the default driye 0
into the computer's memary .

164

ioar e

LU A L L A

Loading ASCII Program Files

When loading ASCII program files, any ex.sting program is not deleted and
variables are not destroyed. Thus extra routines may be added to existing
programs and the extra lines will appear at their correct positions fin
relation to the existing ones (care being taken not to duplicate 1ine
numbers otherwise the original will be over written by the new line).

If a "new" program is to be loaded as an ASCII file then the HKEW command
must be executed prior to loading. In this mode the user may observe the
program file loading line by 1ine on the screen.

Exomple: LODAD “1:TEST.ASC"

This will load the ASCII program file TEST.ASC from drive 1 .into the
computer's memory, the lines of the program appearing on the screen as it
is loading.

Loading Object Program Files (Machine-Code Files)

When loading OBJECT files, an area in memory has to be reserved prior to
loading using the CLEAR command.

The start address will be assumed to be the first location above the cleared
area. (i.e. if CLEAR &9FFF has been used then Toading will commence from

&A00D) .

Machine Code Subroutines can be loaded during execution of a BASIC program
using this facility and then accessed by use of the CALL command as
required. The subroutine should terminate with a &C9 code in order to
return execution to the BASIC program at the Tine immediately following that
containing the CALL command.

If the size of a file is larger than the area of memory available then a MEM
FULL ERROR will be given.

Example: LOAD "0:ROUTINES.OBJ"
This will load the machine-code routines, or data from the file
ROUTINES.OBJ, from the disc currently in drive 0, into the area of memory
previously reserved by a CLEAR command, i.e. &A000 in the example above.
GENERAL NOTE: If a file is not present on a particular disc then a NO FILE

error will be given.

Related Keywords: CLEAR DRIVE SAVE

165

LOCK LOG

LOCK
Syntax: LOCK “eufns"
Purpose: This is a Disc Command which locks the specified file,

Files PROTECTED in this manner may not be re-written over, erased, or
renamed (i.e. cannot be corrupted),

A 'Locked' file is marked in the directory with a star preceding the
filename, e.g:-

*S0UND, XBS

If the file does not exist a NO FILE error occurs,

Related Keyword: UNLOCK

LOG [Egggrithmj
Syntax: LOG(N)

Purpose: This is a Function which returns the Togarithm to the base 10, of
the value given by N.

If N is less than or equal to zero a QTY ERROR DCCUrs.
Example:
PRINT LOG(2)

The value .30103 will appear on the screen,

Related Keywords: LN xp
166

I I

& &I LAY

MAG

MAG {Egﬂp1fy]
Syntax: MAG J

Where J can have a value from 0 to 3,

each number representing a particular

sprite magnification. A1l 32 sprites are affected equally,

Purpose: This is the Sprite Magnification command.

L
0
1
2
3

MAGNIFICATION

defines an 8xB pixels sprite.
defines a double sized 8x8 sprite
defines a 16x16 pixels sprite

defines a double sized 16x16 sprite

MAG O and 1 apply to a shape which has been defined aon a single Bx8 pixel

grid.

below.

In MAG O the shape remains as a single 8xB pixel character as shown

L
1

8

In MAG 1 the single 8xB shape is doubled in size {magnified) to occupy an
area equivalent to a 16x16 pixel grid. Each original pixel is in fact made 4
times larger, resulting in a grid of 8x8 larger pixels as shown below.

16

16

167

MAG 2 and 3 apply to a shape which is built up from four 8x8 pixel grid
shapes to form a single shape on a 16x16 grid. In MAG 2 the four shapes are
printed as a single shape as a 16x16 pixel grid as shown below.

- __1.1_

1 3

16

16

When "defining" the complete shape the data for each BxB grid should be used
with the SHAPE command in the order shown above. In MAG 3 the shape on this
16x16 grid is doubled in size to occupy an area equivalent to 32x32 pixels.

Example:
MAG 1

Following this command all 32 sprites would be double sized 8xB until
another MAG command was introduced to change the selections,

Related Eeywords: SHAPE SPRITE

168

' F 'IFl O FIFE ‘I FF Fr *FL I OFrFL O'FE PR IR OYFEOFR YRR Y

|

[I

1 1]

MGE

MGE (Merge)
Syntax: MGE

Purpose: This is a command used to "merge" sections of a program which have
been "held" or, add a second program to one already in memory.

MGE takes no account of two or more lines having -the same number and
therefore both lines would appear in the final result.

Example:
10 REM LINES KEPT IN VIEW

20 PRINT

30 PRINT "**

40 PRINT

50 PRINT "#°

£0 REM LINES HIDDEN
70 PRINT "A"

B0 PRINT

90 PRINT "B"

100 PRINT

4 HOLD 10,50 will keep lines 10 to 50 of the program while 1ines &0 to 100
are apparently lost. Thus a LIST after this use of HOLD would give the
following.

10 REM LIMNES KEPT IN VIEW
20 PRINT

30 PRINT "*"

40 PRINT

50 PRINT “#"

The execution of MGE brings back 1ines 60 to 100 and if LIST is used after
MGE the original listing will reappear (i.e. lines 10 to 100).

<se also the example mailing 1ist in File Handling which illustrates the use
of MGE.

f=lated Keywords: CHAIN HOLD RENUM

169

MID$ MOD

MID$(Middle of String)
Syntax: MID§ (<string expression=, J1,J2)

Purpose: This is a String Function which returns a number of characters,
given by the value of J2, starting from the character position given by J1,
in respect of the string specified in the function.

J2 may be omitted, 9in which case the remainder of the string, starting from
the character position given by J1, is returned.

Examples:
PRINT MID$("HELLO",3,2)

The result will appear on the screen as "LL".

PRINT MIDS("HELLE",3)

The result will appear on the screen as "LLO".

Related Keywords: LEFT% RIGHTS

MOD (Modulus)
Syntax: I1 MOD 12

Purpose: This is an ARTHMETIC OPERATOR which forms an expression equal to
the integer value of the remainder resulting when I1 is divided by I2.

Example:

5 MOD 3 returns a value of 2

Related Keyword: INT

170

T | W ¥ B T 'R | Td, T4 | T d Td Ta e B T & |

F

1 1 BT RYF BT IBY BT RN

(8

S DN Y B Y ! Y R %

A

MODE MOS

MODE (serial port mode)
Syntax: MODE L,P,5
Purpose: This is a command to set up the mode of the serial interface.
= Word length in bits. L can have values in the range 5 to 8.
= Parity. 0 = no parity; 1 = odd and 2 = even parity,
i;g[ﬂumher of stop bits. 0 = 1 stop bit; 1 = 1% stop bits and 2 = 2 stop
The default values are: L = 8; P=0; 5 = 2
Example: MODE 7,2,1
This gives 7 data bits, even parity and 13 stop bits

Related Keyword: BAUD

M0S (Machine Operating System}

Syntax: MO5

Purpose: This is a System Command and is used to transfer control to the
*Machine Code Monitor® section of the "Machine Operating System”.

The ¥ and ¥ commands in MOS can be used for cold and warm starts when
re-entering BASIC.

 Belated Keyword: DOS

171

MULS$ MUSIC

MUL$ (Multiple String)
syntax: MUL${ <string expression > ,J)

Purpose: This is a String Function which will cause a string to be repeated
the number of times, given by the value of J (i.e. string Multiplication).

The resultant string must not exceed 255 characters.
Example: PRINT MUL$("AB",10)
This will give the following display.
ABABABABABABABABABAR
It is a useful function for displaying repeated patterns.
Examples:
i) PRINT MUL$("*",15)
This will give the following.
TSy o v e ok ol e e ok ok ok
i1) PRINT MULS("+=",6)
This will give the following,

t=d=24=t=Fs4=

Related Keyword: STR$

MUSIC
Syntax: MUSIC 51;52:53

Purpose: This command can be used to create various sounds and play tunes
composed by the user.

5tring expressions 51,52 and $3 each represent musical expressions. These
expressions are each allocated to a separate channel, the 3 channels are
then played simultaneously.

It is not necessary to use all the three channels every time and any

expressions which are left "empty" will cause a previous string expression
specified for that channel to be replayed.

172

L& - - .. - L

Ll R

It is therefore good practice to specify a rest (R} for channels not
required to sound. The MUSIC statement does not end until all three
channels have completed their appropriate measures. This makes it important
to ensure that all three channels have the same execution time within a
given measure.

The contents of the expressions 51,52, and 53 indicate the aclual structure
of the music to be played. Individual notes are indicated by the letters
COEFGAB, these representing the chromatic scale.

The following can be included in a music string:-

1. R represents a "rest'.
7. ¥ represents a 'beat', and turns on the noise generator of the P5G rather

than a tone.
3. Vn, where n is numeric data in the range 0 to € which selecis a voice
defined using the VOICE commands.

The duration of a note (or rest) is specified by a number, in the range 0 to
9, immediately following the note (or rest), giving the note values as
listed below.

37nd note (demi-semi-quaver)
16th note (semi-quaver)
“dotted" 16th note

gth note (guaver)

"dotted" Bth note

Quarter note {(crotchet)
"dotted" quarter note

Half note (minim)}

"dotted" half note

Whole note {semi-breve)

[F=T =N = T I Y R
Wom oW owmonowm

If the duration specification is missing from a note, the duration defaults
to the last specified duration on that channel. Un power up the duration is

5.
When written into the form of the MUSIC command the result would be:
mSIE "ER“,“EH“|“GR-

A11 three notes would be played simultanecusly thereby producing a chord.
1t iz of course possible to play one single channel by omitting the other
two from the command as shown below.

ms'[c III:E{'_.RII‘IIHII’I'R-

This would play the three single notes in turn, on channel A, one after the
other, followed by & rest in order to silence the last note.

The simple format, shown above, can be extended such that the contents of
sach channel may be represented in any of the following formats.

a) a single String of notes.

5) a single String Variable {previously allocated to a set of notes],

-] a combination of several Strimg Variables or Strings.

173

Example:

10 A% = "AFGCDE™

20 B$ = “EFCDG"

30 C$ = "CDEGBR®

40 MUsIC "GEBCD",A$,B3+C3$

I w

To increase the octave range each note can be preceded by
produce the effect given in the 1ist which follows:-

+ - raises the note one octaye above middle C,
' = raises the note two octaves above middle (.
lowers the note one octave below middle
lowers the note two octaves below middle C.
lowers the note three octaves below middle .,

"Sharps* and "flats" are indicated as follows.

- precedes the note and indicates a “sharp".
b - precedes the note and indicates a "flat".

Example:
10 MUSIC "0 +#A7 =bES R "R, "R
Music is played on channel A as follows:-

0

VOICE 0 is selected (YDICE D having been
defined in a voice statement).

+ - Raises the note one octave,

- Sharpens the note.
A - The note played

7 = Duration setting of a half note (minim)

a symbol

to

NOTE: Spaces included in the string are ignored and can be used to

increase legibility.

The second note played is E flat played two octaves down for 8 duration of

d quarter note (crochet),

Related Keywords: BEEP psg TEMPO YOICE

174

NEW NEXT

NEW

Syntax: NEW

Purpose: This command deletes all program lines and variables currently in
the memory.

It is used to delete any program currently in memory in preparation for the
input of another program and different variables.

Used in "Direct Mode".

Related Keywords:

NEXT
Syntax: NEXT ¥1,V2,..,¥n

¥1,¥2, etc., are the control variables used in the associated FOR
statements, and must be numeric.

Purpose: This statement is used to indicate the end of a FOR statement loop.

NEXT 15 always used in conjunction with the FOR statement to produce what
is commonly referred to as a FOR-NEXT LOOP,

For a more detailed explanation of see FOR command.

Example:

10 CLS

20 FOR I=1 TD 10
30 PRINT I

40 MNEXT I

50 END

Related Keywords: FOR STEP
175

NOT NULL

NOT
Syntax: =statement > NOT <statement >

Purpose: This is a LOGICAL OPERATOR used in the evaluation/comparision of
statements.

Example:
IF NOT X THEN END
This shows the use of NOT in anm "IF" statement. In other words IF the

condition is NOT true THEMN act accordingly.

Related Keywords: AND DR XOR

NULL
Syntax: NULL J

The value given by J is the number of nulls to be printed and can be from 0
to 235. The default value is 0.

Purpose: This is a special command relating to output. It sets the number of
nulls to be printed after every carriage return (i.e. acts as a delay).

This command is designed to be used when operating slow serial devices,
where the carriage return code may take a little over the time allowed for
one character to print.

The correct setting for & particular device will be found by experimenting
with various values but normally 1 would be sufficient for most devices.

MULL can be used as a function to return the current setting.
Example:

MULL &

PRINT NULL

This will display the value of the current setting for NULL on the screen
(i.e. & in this instance]).

Related Keyword: SPEED

176

OFF ON

OFF
Syntax: OFF <command=

Purpose: This command is used to disable a particular action or aperation
setting. Often used with ERR and EOF commands. For further information refer
to Chapter 11, Error Handling Within BASIC.

Example:

OFF ERR - Disables the ON ERROR trap
OFF EOF - Disables the ON EOF {(end-of-file] trap

Related Keywords: EOF ERR

ON
Syntax: ON J GOTO L1,L2,..,Ln

J is an expression and L1,LZ etc are line numbers. If J is negative then a
(TY ERROR occurs.

Purpose: This alters the order in which BASIC executes a program by jumping
to one of a selection of lines depending on the value of expression J.

The expression J is evaluated to give a number. If the number is 1 then
execution transfers to the 1st line number after the GOTQ. If the number is
2 then execution transfers to the 2nd line number after GOTO. and so on.

Example:

10 INPUT "TYPE IN A NUMBER FROM {1-5)":A
20 PRINT "YOU HAVE SELECTED";

30 ON A GOTO 40, 60, 80, 100, 120
40 PRINT "GLASSES";

B0 GOTD 130

B0 PRINT ®CUPS;

70 GOTO 130

80 PRINT "TANKARDS";

90 GOTO 130

100 PRINT "DISHES";

110 GOTO 130

120 PRINT “MUGS™;

130 END

177

When this program is RUN the following appears on the screen to begin with.
TYPE IN A NUMBER FROM (1-5)

When a number is typed in then the appropriate line number is selected from
the ON-GOTO statement.

NUMBER 1 selects line number 40
MUMBER 2 selects 1ine number &0
MUMBER 3 selects line numner 80
NUMBER 4 selects Tine number 100
NUMBER 5 selects line number 120

Execution is then transferred to the selected line and the appropriate
action is taken; in this case a message 15 output to the screen. Thus
transfer of execution has been contralled by the variable A,

syntax: ON J GOSUB L1,L2,..Ln

Purpose: The same principle can be applied to accessing subroutines using
the GOSUB format.

Thus several subroutines can be accessed from a single line of program
depending on the evaluation of a variable.

Example:

10 REM PROCESSING TO EVALUATE A VARIABLE B
20 - - -~ - - =a--

30 - ----eea

90 END
100 SUBROUTINE 1

M0 = - == =--uns
120 = = = = = = = = = -
130 RETURN

140 SUBROUTINE 2

150 = = == = - = = =«
160 = = = = = = = = - -
170 RETURN

180 SUBROUTINE 3

190 = = = = = = = - - -
200 = = = =~ =« = == -
210 RETURN

Let us assume that there are three subroutines in the program which will be
accessed by the ON-GOTO statement in line 60

The variable B is evaluated by the processing involved in lines 20 to 50 and
will produce a number from (1-3).

178

(o | g "i " g " g J 'y r [J b] | T] 'Y 'Y o | '] 8 | Tl | T] -

e B B EY B (Y BT BT BT

| N | | | 9| il (&

19"

OPEN

The Subroutines are then accessed via the ON-GOSUB statement, selection
depending on the value of B.

If B =1 then 1ine 100 {subroutine 1) would be accessed.
If B =2 then line 140 (subroutine 2) would be accessed.
If B =3 then 1ine 180 (subroutine 3) would be accessed.

The subroutines would RETURN to lime 70 as normal to continue program
execution. (See page 205).

Syntax: ON ERR &OTO
ON ERR GOSUB
ON EOF

Purpose: See ERR and EOF commands and also Chapter 11, Error Handling Within
Basic,

Related Keywords: EOF ERR GOSUB GOTO OFF

OPEN
Syntax: OPEN <ufn= ,5V,R

Purpose: This is a File-Handling Command which opens an existing file,
assigns internal file information and buffer space to the file descriptor,
and indicates the record size to be used.

5Y is a string variable name (but not a string array element) and is the
file descriptor.

R is the random record size (length) and is given as a value in the range O
to 65535, indicating the number of characters involved. R is only specified
for “random access"; if "sequential access" 1s to be applied then R is

omitted (in fact a random record length of O indicates that sequential
access is to be performed).

If a file is not present on the specified drive then a NO FILE error will be
given.

Example:
OPEN "0:SILLY.DAT",FD$,15
This will perform the following:-
a) opens the file SILLY.DAT on the disc currently in drive 0.

b) assigns FD$ as the file descriptor.
c) sets yp for random access using 15-character length records.

Related Keywords: APPEND CLOSE CREATE

179

OR ORIGIN

DR
Syntax: <statemeni> OR < statement>

Purpose: This is a logical operator used in the evaluation/comparison of
statements (1.e. defines an alternative).

Example:
10 IF {X AND Y}=3 OR Y=0 THEN 100

This will cause execution to transfer to line 100 if the result of either
of the statements (¥ and Y)=3, ar Y=0 is TRUE

Related Keywords: AND WOT XOR

ORIGIN
Syntax: ORIGIN x,y

Both x and y can have values in the range -32768 to +32767 and are the
co-ordinates of a point on the screen.

Purpose: This statement defines the origin of the imaginary screen grid in
respect of PLOT, UNPLOT, DRAW, ELLIPSE, and POLY commands, x and y being the
co-ordinates of the new origin. On entry to BASIC the default co-ordinates
are 0,0 and this represents the bottom left hand corner of the screen,

Examples:

a) DRIGIN 20, 24
This would establish the new position of the origin on the screen grid and

all subsequent PLOT, UNPLOT, DRAW, ELLIPSE, and POLY commands would be
executed relative to the new origin.

b) PLOT 128,96

This plots a point at the centre of the screen, assuming that the origin
has not been redefined since entry to BASIC.

ORIGIN 128,96:PLOT 128,96

Redefines the origin and plots a point at the top right hand corner of the
SCIreen.

Related Keywords: DRAW ELLIPSE PLOT POINT POLY SCREEN UNPLOT
180

B e

(%1

| % N S D' Y SR N RN

13

| 3 . N

11

OouT PCOL

out
Syntax: OUT J1,J2

J1 is the exchange "address" of the port, and JZ 1is the value which is to be
output.

Purpose: This command provides direct sutput to the ports of the computer.

Exomple:

The joystick port is at 1/0 address %37 so this will be the value of Ji
sach time this command is used to access the part.

OuUT &32,5
This sends the value 5 to the 8 bit user port (&32).

For information relating to the ports, refer to appendix L.

Related Keywords: INF WAIT

PCOL [Palette Colour)
Syntax: PCOL N,R,G,B

Purpose: This command re-defines the colour produced by the BCOL, GLOL and
TCOL commands. N represents the colour value within the palette, and can be
in the range 0-15. R,G,and B represent the amount of Red, Green and Blue
which make up a particular colour, each can have values in the range 0-7,
where 7 represents the maximum amount of colour, and 0 represents no colour.
Any unspecified colour parameters default to zero.

when BASIC is first loaded, after a ¥ command from MOS or after an RST
~ommand in BASIC, the colour palette is initialised to its default colours.

The default colour palette is:

§ Transparent 8 Medium Red

1 Black 9 Light Red

2 Wpgiam Green 10 Dark Yellow
3 Light Green 11 Light Yellow
4 Bark 3lue 1? Dark Green
S Light Slee 13 Magenta

£ Jart Rec 14 Grey

7 (pam 15 White

3p to 512 ealowrs colour can be generated using this, command.

Example- PIOLIE,7,5,5 will define palette colour 14 to be pink.

181

A Note About Colour.

The best way to determine the values for a particular colour 1is to
experiment. However, here are a few guidelines:

Einstein 256 works on the colour addition principle. This is a little
different from the colour subraction principle which artists use to mix
colours.

The primary colours are:

Red (R}
Green (G)
BElue (B)

The complementary colours are:

Cyan (Bluish/Green) Blue + Green
Yellow Red + Green
Magenta (Purple) Red + Blue

White is made up of equal amounts of Red, Green and Blue.
Red + Green + Blue.

Pastel colours are made by adding white to saturated colours, thus Pink is
made by adding White to Red. e.g. Saturated Red would be given by:

pcOL 6,7,0,0, (i.e. 7 units Red, no Green, No Blue)
To make a Pink, this could be:-
PCOL 6,7,5,5 (i.e. 5 units of White and 2 units of Red)
Grey would be :- PCOL 14,3,3,3
A lighter grey could be: PCOL 14,5,5,5
White is PCOL 15,7,7,7

Related Keywords: BCOL GCOL TCOL

182

3

14 B S 8 1 3 B % B

LI

| LT % S Y ' Dt % B Y % B

Al

Al

11

PEEK Pl

PEEK
Syntax:; PEEK(I)

I must evaluate to a number in the range 0 to 465535 and can be given in
decimal or hexadecimal.

Purpose: This is a Machine Code related command which returns an integer in
the range 0 to 255 which represents the contents of the memory location
given by I.
Example:

PRINT PEEK(&4100)

This will display the contents of memory location & 4100 as an integer.

Related Keywords: CALL DEEK DOKE POKE VDEEK VDOKE VPEEK VPOKE

PI
Syntax: PI
Purpose: This 15 a Function which returns the value of pi as 3.14159 for use

im expressions.
1t 45 much faster than using a variable to hold the value of pi.

Example:
PRINT PI
The walee 3.14159 will appear on the screen.

Belated Esywords:

183

PLOT

PLOT
Syntax: PLOT x,y

% and y are the co-ordinates of any point on the screen. x being horizontal
and ranging from -32768 to 432767, y being vertical and ranging from =32768
to +32767.

Purpose: This is a Command used to illuminate (turn on) a single pixel point
on the display screen.

The screen can be thought of as being divided into a number of horizontal
pixels, and a number of vertical pixels. The larger the number of pixels in
either direction, the better is the resclution of the system.

Einstein 2?56 has a number of graphics modes. BASIC supports two of these,
In graphics mode 2, the screen has a resolution of 256 pixels horizontally,
and 192 pixels vertically. In graphics mode 6, the screen has a resolution
of 512 pixels horizontally, and 192 pixels vertically. The two display
modes are selected using the SCREEN command.

Plotting cannot take place in screen mode 6, which is text only.

If the origin is defined as 0,0 (the default value] then only pixels in the
range x = 0 to 255 (or 511) and y = 0 to 191 can be illuminated on the
SCTeen. However, all other values in the range specified, above, are
allowed, but will be off the screen,

Mode Y9938 Mode Text Resolution Graphics Resolution {pixels)
SCREEN O graphics 2 32 x 29 256 x 192

SCREEN 1 graphics 2 40 x 24 256 x 192

SCREEN 2 text 2 B0 x 24 Text Only

SCREEN 3 graphics & 32 x 24 512 x 192

SCREEN 4 graphics & 40 x 24 §12 = 192

SCREEN 5 graphics 6 B0 x 24 512 x 192

SCREEN & graphics 6 B0 x 24 512 x 192

Example:

PLOT 120,90

This will illuminate the pixel at 120,90 din the current foreground
graphics colour (as set by a previous GCOL command), provided the ORIGIN
is defined as 0,0

Related Keywords: DRAW ELLIPSE ORIGIN POINT POLY UNPLOT

184

POINT POKE

POINT
Syntax: POINT(x,y)

x and y are the co-ordinates of a graphics point on the imaginary screen
grid. Values for x and y can be in the range -32768 to +32767.

Purpase: In screen modes O and 1 the function returns a vajue corresponding
to the state of the pixel at x,y. 0 = pixel off, 1 = pixel illuminated, and
255 = off screen, in either x or y or both.

In screen modes 3 to 6, dinclusive, the function returns the value of the
colour palette (0-15) at the point, or 255 if either x, or y are of f screen.

Example:
1) SCREEN 1
X = POINT(70,65)
PRINT X

This will display a value of 0 or 1, according to the condition of the
point whose co-ordinates are 70,65. (i.e. whether 1it or not).

2) SCREEN 4
X = POINT(70,65)

This will display a value of 0 to 15, according to the value of the colaur
palette at the point 70,65

Related Keywords: DRAW ELLIPSE ORIGIN PLOT POLY UNPLOT

POKE
Syntax: POKE I1,J1,J2,..,dn
Purpose: This is a Machine Code related command which places the values of

the expressions J1,J2 etc., into memory, starting at the location given by
1.

Examples:
POKE 16384,132
This will place 132 (i.e.%84) into location 16384 (1.e.%4000)
POKE &5100,477,434,461

This will put &77 into location &5100, &34 into location &5101, and &61
into location &5102.

@elated Keywords: DEEK DOKE PEEK VDEEK VDOKE VPEEK VPOKE
185

POLY

POLY (Polygon)
Syntax: POLY MN,x,y,R,T,z,a,b

Purpose: This graphics command will draw a polygon according to the values
given in the parameters.

N is the number of sides of the polygon. x,y are the co-ordinates of the
centre of the polygon and can haye values in the range -32768 to +32767, R
15 the distance from point (x,y) to the vertices of the polygon i.e. R is
the horizontal radius of an ellipse which would contain the polygon and T is
the ellipse gqualifier given by the following:-

1 = VERTICAL AXIS (of ellipse)
HORIZONTAL AXIS (of ellipse)

If T is omitted it will default to 4/3 thereby having the same effect as in
the ELLIPSE command, resulting in a REGULAR POLYGON (owing to the aspect
ratio of the screen being 4:3).

NOTE: The aspect ratio of 4/3 1s true only in screen modes O and 1, and in
625 lines. The default value is retained for compatibility with Einstein
programs.

Far other screen modes, and line standards, the value for T, needed to
display a regular polygon is shown in the table below,

Screen mode T{525 lines) T{625 lines)
0 1.167 1.333
1 1.167 1.333
i not applicable not applicable
3 0.58 0.67
4 0.58 § 0.67
5 0.58 0.67
6 0.58 0.67

* POLY has no meaning in screen mode 2 (80 column text only).
The value of z is a number in the range 0 to 5 indicating the type of line
to be drawn (if omitted z will default to 0),

Continuous Line

Continuous Unplot

Dotted line 2 dots on, 2 dot off,

Dashed line 4 dots on, 2 dots off,

Dotted-Dashed line 10 dots on, 2 dots off, 2 dots
on, 2 dots off,

- Dashed-dotted line 10 dots off, 2 dots on, 2 dots
off, 2 dots on, 10 dots off.

LISER DY (SR R |

o Ly —

186

'a' and 'b' are start and end angles which indicate where the drawing of the
polygon should begin and end. These are optional, The start and end angles
are specified in radians and are numbered in an anticlockwise direction from
0 at the right hand horizontal axis up to 2 PI radians for one complete
revu!ut;ugi The values may be specified as numbers or an expression in
terms o ‘

The arientation of polygons on the screen is determined by the internal
angle between the horizontal axis and the first side of the polygon drawn
from the start point. Look at the following example:-

POLY 4,100,100,50, ,0
The 'T' parameter and start and end angles ('a' and 'b') are omitted thus

producing a .square on the screen as shown below (solid outline only).
Notice the orientation which depends on the angle at x.

VERTICAL BXIS

HOR | ZOHTAL
AXIS

The first side of the polygon commences from the start point on the
horizontal and is drawn at the angle given by 'x'. This angle varies
according to individual polygons and is equal to half the interior angle at
that point. In the case of a square 'x' is 45°, for a regular hexagon 'x'
will be 60° giving the orientation shown below.

POLY 6,100,100,50, ,0

187

In the case of a reqular Pentagon x will be 54° giving the orientation shown
below

POLY 5,100,100,50, ,0

e i START

POINT

specifying start and end angles will affect the axes of a polygon and give a
different orfentation on the screen, This is best illustrated by the
following examples using a square.

5TanT
FOINT

POLY 4,100,100,50, ,0,PI+4,PI+4

Here the 'T' parameter is omitted but the start
as both being PI+4 (i.e.0.785 }.
the orientation as shown below.

and end angles are specified
This now produces a complete square with

The start and end angles caused the whole square {polygon) to be turned
through 45° (PI/4).

1BE

If 'a' and 'b' are specified as different values then an incomplete square

(polygon) would be drawn (as for an ellipse). The arientation will be
affected just as before. Look at the following example,

POLY 4,100,100,50, ,0,PI+4,7*Pl=4

This will produce the following result on the screen,

If 'a' and 'b' are given as negative values the start and end points will be
joined to the 'x,y' point (centre of the axes) with Tines as illustrated in

the following example.
POLY 4,100,100,50, ,0,-PI+4,7*PI+4

This gives the following result:

The principles described above apply to all polygons.

Related Keywords: DRAW ELLIPSE ORIGIN PLOT SCREEN UNPLOT

183

POP

FOP
Syntax: POP
Purpose: This statement is used in association with subroutines.

If allows a nested subroutine to return to the statement immediately
following the GOSUB statement preceding the GOSUB relating to the particular
routine which is being executed.

POP is only used from within a nested subroutine and this is best explained
by the example below:-

10 GOSUB 50
Bl s
0 - - - -
40 END
50 REM.SUBROUTINE
60 - - = -
70 - = == OUTER SUBROUTINE
80 GOSUB 120 — CALLED BY LINE 10
90 = = = =
100 - - - -
110 RETURN

120 REM-NESTED SUBROUTINE
30 = = = e INNER SUBRQUTINE
TR0 =R —— (NESTED)

160 - - TEST CONDITION CALLED BY LINE B0
A60 IF "TEST CONDITION" THEN POP
170 RETURN

o= r e m csssmesm - ————

"

LINE 10 calls up a subroutine which starts at line 50.

LINE 80 calls up a second subroutine from within the existing subroutine
(i.e. the nested subroutine), which starts at 1ine 120

This second subroutine would normally return to line 90 and continue with
the remainder of the original subroutine. However, as a result of some kind
of “test condition" we might wish it to "return® to line 20 (i.e. to the
line following the original GOSUB call)., Thus the processing contained
within 1ines 90 and 100 of the original subroutine would be omitted, It is
this facility which POP provides.

Example:
In the example given below, the result from execution of lines 230 and 240
will direct subsequent execution to either invoke POP or transfer to line
250.
The resulting action from Tine 250 is indicated by the arrowed lines and

will determine whether or not the # symbol will be printed {as contained
in the processing of lines 160, 170, and 180).

190

|II -[I II l -[l II I -I r

LRl

| % LAY | A

4 1 A

Al

O S e

If the POP statement is executed, i.e. A is not 2, the RETURN statement
will direct execution to line 50 rather than returning to 1ine 150.

Example:

10 PRINT "KUMBERS"
20 GOsSUB 70
(*30 PRINT “LETTERS"
110
"END QF THIS SEQUENCE"

=] 10 5
0 PRINT 1 FIRST SUBROUTINE CALLED
BY LINE 20
100 RETURN
TTOTOR 1 = 1 10 5
120 PRINT “ABCDE"
130 NEXT I
140 GOSUB 200 SECOND SUBROUTINE CALLED

#150 PRINT “END OF SYMBOLS" [~ BY LINE 40
160-FOR'1 =1 Th S
170 PRINT "#"

180 NEXT I

U130 RETIRY.
POOFOR L = 1 10 5 NESTED SUBROUTINES CALLED
210 -PRINT "%* e B LINE 1900

220 NEXT I
230 INPUT "IF NUMBERS TYPE 1 IF SYMBOLS TYPE 2":iA
240 IF A ¢ THEN POP

250 RETURN

i
i
1
1
1
1
1
I
I
]
]
]
i
]
]
i
|
I
I
I
I
¥
[
i
[
L]
[]
i
I
1
1
1
I
1
I

r
]
r———l—‘.- - e e e —

Related Keyword: GOSUE

191

POS

POS (Position)
Syntax: POS(J)
J can be 0,1, or 2, each number associating a particular function,

Purpose: This Function is used to abtain the current output column or row
position, depending on J as below,

POS (D) - This gives the print column count of the current output device. It
is independant of screen size and 1s zeroed when a carriage return, HOME or
clear screen/FORM FEED code is output, or if the column count exceeds 255,
If output is not directed to any other output device then P0OS(0) reflects
the cursor column position on the screen.,

POS (1) - This gives the current column position of the cursor on the
screen,

POS (2) - This gives the current row position of the cursor on the screen.

POS(1) and POS(2) are designed to be used in association with the PRINT @
facility.

Example:
PRINT POS(0)

This will display the current value of the “column count® of the current
output device,

Related Keywords: PRINT PRINT@

192

L oL L S L L)) -y | 2] L3 - L O

L

PRINT

PRINT
Syntax: PRINT E

Where E can be a single expression or a 1ist of expressions, which may be
numeric or string type.

Purpose: This command is used to send data to the current output device
{screen, printer, etc.).

PRINT may be abbreviated to ? When the program is listed this will appear
as PRINT, but will not affect the query (7) character where it appears
elsewhere in program text.

A PRINT statement on its own will generate a carriage return and line feed
(1.2, 1ea?es a line blank and moves immediately to the beginning of the next
line down).

If several expressions are used they are separated by one of a selection of
separators., These separators control the presentation of the final output.

A carriage-return, line-feed is generat=d at the end of PRINT statements
except when a comma [,) or semi-colon (i) separator appears at the end of
the print statement.

NOTE: A carriage return/line feed is still generated if the print output
extends into the last (right-hand) column.

Separators:

Semi-Colon (;) This lpaves the cursor where it is so that the next
expression will print from the end of the previous ane.

Example: PRINT "JABBER™;"WOKKY"
This will be output as follows:-
JABBERWOKEY
Comma (,) This moves the cursor to the start of the next print zone, Print

zones are simply specified columns which are situated at intervals of 10
spaces (character positions).

[CEECIT T TN LR EEEE LT L LT L LR i
i 10 SPACES J

ZONRE l IONE 2 ZORE 3 IOME £

Example: PRINT "JABBER","WOKKY","WORKY"

This will be output as follows:-

JABBER WOKEY Y
y " 193

Each Tline on the screen display contains 40 or 80 character positions
(according to screen mode) therefore there are 4 print zones. (Or 8 in 80
column).

The zone limit indicates the character position at which the final ZONE
starts in a Tine of text. When the existing printing has gone beyond this
point the next expression will be printed at the beginning of the next line
(1.e. & carriage-return, line-feed is generated).

The zone width and zone limit may be modified by use of the ZONE command.

The B Symbol. This allows printing of expressions to commence from a
specified point on the screen by use of co-ordinates. (See PRINT®),

Printing Numbers:
A1l numbers are printed with a leading and trailing space.
Example: PRINT “TO YOU™;987,71:32]

This will give the following output:-

TO Youeay 71321

The Teading space is reserved for the sign of the number {(+ or =) which is
only shown when the number is negative. Both spaces may be removed, if
desired, by use of the IOM command,

Numeric printout may be specially formatted by use of the FMT command,

Related Keywords: FMT I10M PRINT@ PRINT# SCREEM SPC TAB WIDTH ZONE

194

BORT o 0 RD KT RE el r r s

| S % [B I R g Y

(A

1N

PRINT@

PRINTE
Syntax: PRINTE x,y;E

Where x and y are the co-ordinates of the first character position to be
used and E is the expression to be output. x and y can have values in the
range 0 to 255.

Purpose: This command allows printing of expressions to commence from a
specified point on the screen by use of the co-ordinates x and Y. The
co-ordinates must each sbe separated by a comma and there must be either a
comma or semi-colon between the expression E and the co-ordinates {in this
instance the commas and semi-colons are not executed as print separators).

The screen is divided into rows and columns with the origin, 0,0 at the top
1eft. The number of rows and columns varies with the screen mode.

Screen Mode Text Displ Display Mode
Rows f%%umns
0 24 3z2 Graphics 2
1 24 40 Graphics 2
2 24 &0 Text 2
3 24 32 Graphics 6
4 24 40 Graphics 6
5 24 B Graphics 6
& 24 B Graphics &

For example, in screen mode 2, the screen is 'divided' into a grid of 80
colums across by 24 rows down,

NOTE:

1¥ either of the co-ordinates are greater than the maximum number of columns
or rows then a "wrap around" will occur. Thus in screen mode | PRINTO
50,38 will cause the cursor will move to 10,14,

Related Keywords: FMT I0M PRINT PRINT# SCREEM SPC TAB WIDTH ZONE

195

PRINT#

PRINT#
Syntax: PRINT# J

J is a "device number previously assigned to a device and in the range 0
to 254, although only devices 0, T and 2 are defined in EBASIC.

Purpose: This statement assigns a new output device (eg. Printer etc.)
indicated by the value of J,

All output from statements such as PRINT and LIST will be directed to the
new device selected by N until another FRINT# statement is encountered to
change the device selection, the program ends or the program is aborted
either by an error, or from the keyboard.

In direct mode each line acts like a small program therefore if PRINTH is
used, the corresponding output statement must appear in the same line, After
execution in direct mode the keyboard and display (input device 0 and output
device 0) are automatically selected, The following three devices are
currently assigned within EBASIC.

DEVICE DEVICE WUMBER
VDU (SCREEN} - 0
PRINTER - 1

SERIAL PORT - 2
(RS232)

When a program ends or aborts, either through an error or as directed fram
the keyboard, the output device reyerts back to the display umit screen
(i.e.device 0).

Example: PRINT# 1

A1l output following this statement in a program will be directed to the
Printer.

PRINT # can be used in the same manner as a normal PRINT statement but the
"device number" must be followed by a semi-colon {;) so as to distinguish
the remainder of the statement.

Exﬂq'.ﬂe: PRINT#1: "ANSWER THE FOLLOWING QUESTIONS"

Example: 10 PRINT#1
20 LIST

This will 1ist a whole program to the printer device. When the listing of
the program is complete ‘ready" is printed on the display.

196

e kr okt s

L

LU B LA Y B Y B % R N Bt G 8 B 8§

il

Example: PRINT#Z

A1 output following this statement in a program will be directed to the
serial port (RS232).

Example: PRINT#1:LIST

When used in direct mode also lists to the printer. When listing 1is
complete an internal PRINT#O0 is performed, switching the output back to

the screen.
Use With Files:
Syntax: PRINT# SV,R;E

Purpose: This command is used to output the expression 1ist given by E, to
the file given by the file-descriptor SV, from the start of the record

number given by R in the file.

The location relative to the start of the file is calculated as R multiplied
by the record length given when the file was opened. {This only applies to
random access and 1s not allowed in sequential access). For "sequential
access", omit the (,R) but keep the (;) giving the following format.

PRINT# SV;E

Output will then start from the current place in that file since the BASIC
keeps account of its place in a particular file even when several files at
once may be open for output. [In fact the only purpose of specifying the
record number R is to define the point within the file at which input or
putput is to begin, therefore it will be assumed that it "starts from where
it left off" if no record number is given].

With disc files opened for sequential access, the internal file pointer can
be set to the start of the file by specifying a record number [any number
will do, since it will be multiplied by the ZERD record length).

The expression 1ist given by E is as for a normal PRINT statement and the
data output will be EXACTLY as for that. Hence a carriage-return/Tine-feed
is output at the end of the statement unless terminated by the semi colon.

A1l subsequent statements supplying output, following ths command, will now
go to a file until another PRINT# or CLOSE statement is encountered.

PRINT#SV,E (no semi-colon) and PRINT#SY can be used to set up the specified
£ile for output. A1l subsequent normal output statements will then direct
data to the file [e.g. PRINT,LIST etc).

¢ PRINT statements are then terminated with a semi-colon (;} there will be
=0 carriage return/line feeds, and a stream of data may be output to a file.

The automatic tab expansion (where CHR$(9) is expanded to spaces) may need
suspending by use of the IOM7,0 command.

This now facilitates the output of strings which contain machine-code.

Related Keywords: LIST LISTP PRINT
197

PSG

P56 (Programmable Sound Generator)
Syntax: PSG R,J

Purpose: This is a Sound Generator command which allows direct access to the
sound generator "registers®,

R 15 the register number and has a valye from 0 to 15.
Jd 15 the register value in the range 0 to 255,
This command can be used to create particular "sound effects” as described
in a later section which is devoted to the details of the Programmable Sound
Generator,
Example:

PSG 12,120

This will store 120 in register 12 of the sound generator.

P53G can be used as a function to obtain the current value of a specified
register,

Example:
X-= PSG(8)

This will return the value of the channel A amplitude register in X,

"Related Keywords: MUSIC TEMPO VOICE

198

V- - - LL b _—

PSW

PSW (Password]
Syntax: PSW password

Where password is an & character name enclosed in quotes, selected by the
user and may contain any characters other than control characters.

Purpose: This command sets up the password protection facility which can be
used for security purposes to limit the access to any given file to
authorised personnel only.

Once a password has been invoked any files saved can then only be loaded
back under the same password. Any files which exist on the disc either
without a password, or under a different password, cannot be loaded whilst
the current password is in operation.

To change the password use PSW again with a different password. To turn off
the password (or make sure that no password is in forcel) use PSW by itself
{i.e. PSW and no password).

NOTES:

1. An unprotected file (i.e, a file saved with no password invoked) must be
read back without a password being in force.

7. The password itself is not stored anywhere on the disc, therefore the
sser must know it or record it elsewhere.

3. There is no indication given in the directory that a file has been
protected, The file can apparently be read, but appears to be complete
rubbish.

4. The directory itself is unaffected by the password so that it is
serfectly acceptable to mix unprotected files and files saved under various
sasswords stored on the same drive {as long as you know which are whichl}.

Example:

P IXZ247Y5"
SAVE"MAIL. XB5"

Having saved the file MAIL.XBS under the password IXZ347Y5 it can only be
read or loaded back if that password is in force. Likewise other files
sot saved under this password cannot be read or loaded while it 1is 1im

ferce.

Belated Keywords:

199

PTR

PTR {EPiUEFE}

Syntax: PTR J,1

J is a number in the range 0 to 24.

Purpose:

This allows the user to set selected scratch pad locations without

using PEEK or POKE, but using the number J to select the locations, and I to
be the new value., J is in the range 0 to 24.

Location numbers, J, are selected from the 1ist given below.

0 HTEXT Default or 'hard' pointer to start of BASIC program

TEXT

—

SCHD
AUXCMD

ERRTAB
AUXERR
SADR

SFNADR
AUXADR
USRLOC

DEVPTR
DEFLST
BUFPTR
BUFLEN
TETTOP
YARTOP
ARRTOP
STRBOT
STREOT
I¥DU
LIMIT

e . R
el B3 — O A0 00~ OF o e Lad Md

[t [i e e R |
e BT e T R

a
e

TOPRAM

s
a

LNNO
DATLN

P
£ L

DATPTR

Pointer to start of BASIC program (modified
by HOLD)

Pointer to standard reserved word table,
Pointer to auxiliary (user) reserved word
table. :

Pointer to normal error message table,
Pointer to auxiliary error message table.
Pointer to standard address table.

Pointer to standard function table.
Pointer to auxiliary address table.
Pointer to user machine-code routine (CALL
as function),

Pointer to 1ist of available I/0 devices,
No of lines to 'LIST' at a time.

Pointer to start of input buffer,

Length of input buffer,

Pointer to end of BASIC program.

Pointer to end of simple variable space,
Pointer to end of array space.

Fointer to bottom of string space.

Pointer to bottom of stack area,

Pointer to bottom of 'internal YDU' area.
Pointer to top of RAM used by Tatung/Xtal
BASIC.

Pointer to top byte of RAM available

to user,

Current 1ine number being executed.

Line number of current DATA state-

ment (undefined before a READ statement has been done).
Pointer to current position in DATA
statement (If using READ statements). Can be moved to specified
line by RESTORE L statement

Any value for J outside the range listed above will give a RANGE ERROR,

The current value of any PTR Tocation may be accessed by using PTR as a
function with the argument representing the required location as follows.

200

[T

¥ 'V i 'y ¥ Lo [T Al

I'¥F i

Bl Bl k) KT WM Bk BF &S

Ll

MO OM MM M MM

RAD

Examples:

A= PTR{12)
This puts the start address of the current finput buffer area into the

variable A.

PRINT HEX$(PTR{12))
This will display the current address value for the input buffer area {in

hexadecimal format).

NOTE: Great caution should be adopted when using this command as there are
no facilites for checking that alterations are not affecting other locations
which might already be 1in those areas of memory. For example, the CLEAR
command should be used to set up the LIMIT and STKBOT locations, not PTR

20,E and PTR1S,E.
Related Keywords: DEEK DOKE PEEK POKE

RAD tgggianal

syntax: RAD(N)

purpose: This is a Function which converts the angle given by N (in degrees)
to radians.

Examples:
¥ = RAD(30) - Returns a value of .523599 radians
in X
>21NT RAD(30) - This will display the value .523599
gn the screen.

% = SIN(RAD(30)) - Returns the sine af 30° in % {i.e. 0.5)

gelated Keywords: ATN COS DEG SIN TAN

201

READ

READ
Syntax: READ V1,¥2,..,Vn

V1,V2,etc. are variables which are linked up to corresponding values in the
same order as listed in a DATA statement.

Purpose: This statement is used to access data, stored in DATA statements,
from within a program as opposed to input from the keyboard. BASIC positions
a "pointer® at the last item of data read so that subsequent READ statements
will continue from that point.

If there 1s insufficient data available for the READ statement a DATA ERROR
will occur.

Example:

10 READ A,B,C

Rl

M= =-=-== Processing lines.
s

50 DATA 9,20,30

This will READ a value of 9 faor A, 20 for B, and 30 for C.

Example:

10 READ A,B,C
20 - - - - -
30 - - - - -

40 READ D,E,F

50 - - - - -

60 - - - - -

70 DATA 30,6,19,20,64,71

The first READ statement in line 0 will read a value of 30 for A, & for B,
and 19 for C. The pointer is then positioned at 19 in the DATA statement 50
that the second READ statement, in line 40, will start from that point.
BD,E,]fEI',Eﬂ,Eq,ﬂ
Pointer

Thus the second READ statement will read a value of 20, for D, &4 for E,
and 71 for F.

Related Keywords: DATA RESTORE

202

r

(Bl B BT IR R GET IRT iRE R

91

1 % .y

' B N B B Y Y R N

11]

_h]‘ﬂ Eeywords: DRIVE DIR

REM REN

REM (Remark)
Syntax: REM

Purpose: This causes the remainder of the line to be ignored by the
Interpreter (i.e. it is not processed).

It is used for entering notes anywhere in a program to clarify the purpose
of particular sections and their functions.

Example:
10 REM PROGRAM TEST FOR COLOURS

This line is not processed and is merely a comment line as an aid to the
[0 Ammer .

NOTE: Mo further BASIC statements can be entered on the same line after a
REM statement.

eg. 100 REM PROGRAM ENDING:STOP

Here the stop will not be executed.

Related Keywords:

REN (Rename)
Syntax: REN "old <ufn>" TO0 “new <ufn>"*

Purpose: This is a Disc Command which renames the file given Dy old file
to the name given by new file for the disc in the current default drive.

I¥ new <ufn» is already in use on the disc a FILE EXISTS error will occur.
1f old <ufn> does not exist a NO FILE error will occur.
1f old <ufn> is a locked file a FILE LOCKED error will occur.
Example:
RER "ROUTINES" TO "PROCESS"

Tais will change the name ROUTINES to PROCESS for that particular BASIC
File.

REN "PARTY.ASC™ TO "GROUP.ASC"

This will resame the .ASC file PARTY to become GROUP.ASC.

203

RENUM RESTORE

RENUM (Renumber)
Syntax: REN L1,L2

L1 is the new starting line and LZ is the increment to be used. If omitted,
both L1 and L2 will default to 10.

Purpose: This is a System Command used to renumber a whole program or a
"held" part of a program.

All line number references following GOTD, GOSUB, RUN, THEM, ELSE, AND
RESTORE commands are modified accordingly during the renumbering process.

Examples:

RENUM 1000,5 Will renumber, making the first line 1000 and then
increment by 5 (1000,1005,1010,1015 etc).

RENUM Will renumber making the first Tine 10 and then
increment by 10 (10,20,30,40 etc).

RENUM 500 Will make the first Tine 500, and then increment by 10
(500,510,520,530 etc).

RENUM, 20 Will make the first line 10 and then increment by 20
(10,30,50,70, etc}.

Related Keywords: LIST HOLD MGE

RESTORE

Syntax: RESTORE L

Where L is given as a line number.

Purpose: This statement positions (restores) the internal pointer, used by
BASIC in DATA statements, to the beginning of the first DATA statement
following the line number L, regardless of where the pointer had been left
by previous READ statements.

This facility allows DATA statements to be re-read several times within the
same program thus avoiding having to store the "data items" in varfables
throughout the whole execution of a program.

L (1ine number) is optional and, if omitted, the pointer is restored to the
beginning of the very first DATA statement in the program.

204

1% DR Y B R Y B R Y B N N R N

N kil

| B S B Y B N B Y

t

- M M

Example:
10 READ A,B,.C
Eﬂ..-..--
Bl e
40 DATA 10,20,40,70,90,110,15,17,150
50 READ X,Y,Z
,E.D_.....--
Mn=====
B0 RESTORE 30
90 READ D,E.F
100 = i Vi
10 = = = = =
The sequence of operations would be as follows:-
1) The READ statement in line 10 will give A a value of 10, B a value
of 20, and C a value of 40.
ii) The internal pointer is then positioned at 40 in the DATA statement.
10,20,40,70,90,110,15,17,150
1
Pointer
149)The READ statement in line 50 will continue from the pointer and give
% a value of 70, Y a value of 90, and Z a value of 110.
iv) The internal pointer is then repositoned to 110.
10,20,40,70,90 110,15,17,150
t
Pointer
v) The RESTORE statement in line 60 causes the pointer to move to the
beginning of the DATA statement in line 30.
10,20,40,70,90,110,15,17,150
Ptinter
vi) The read statement in line 90 therefore gives D a value of 10, E a
value of 20, F a value of 40.
vii)The pointer is then positioned once again at 40.

10,20,40,70,90,110,15,17,150.

Pointer

Related Keywords: READ DATA

205

RETURN RIGHT $

RETURN

Syntax: RETURN

The Tlast line of any subroutine should always be RETURN.

Purpose: This terminates a subroutine accessed by a GOSUB statement.

Execution is transferred back to the line immediately following the original
GOSUB statement.

If a RETURN is encountered without having been preceded by a GOSUB then a
RETURN ERROR will occur.

Related Keywords: GOSUB

RIGHTS
Syntax: RIGHT$(<string expression=,J)
Purpose: This 15 a String Function which will return the rightmost number of

characters, given by the value of J, of the string specified in the
function.

Example:
PRINT RIGHTS("HELLO",2)
This will display the following result on the screen:-

Ld

Related Keywords: LEN MID$ LEFTS
206

L/

CLUBE B % B S} A % Y 8

(% S S D S Y e Y

RND RST

RND (Random)
Syntax: RND(I)
Purpose: This is a Function which returns a random number.

®hen I=1 the function returns a random number in the range D to 1, as a
floating point number,

When I is in the range 2 to 65535 the function returns an integer random
number ranging from 0 ta (I-1).

When [=0 the functions returns the last random number produced, whether
integer or real.

Example:

RND{9) - returns a number in the range 0 to 8
RND{307) - returns a number in the range 0 to 306.

Example:
PRINT RND(11)

The random number selected from the range 0 to 10 will be displayed on the
screen,

Related Keywords:

RST {EgEEprt]
Syntax: RST

Purpose: This command is used to reinitialise some default settings within
the machine.

a) Clears the screen and sets screen mode 1.

b} Resets the character generator, to the default character sat,

c} Removes any sprites which may be present.

d}) Turns off the disc drive motors if they are running.

e] Resets the sound generator.

f) Resets the default auxiliary table pointers.

g) Resets the default WIDTH, SEP and ZONE values,

h) Sets the text and graphics foreground colour to white, background
calour to transparent.

207

RUN

The command does not destroy the current BASIC program or variables. It
can, therefore, be used within a program where it would otherwise be tedious
to use a string of commands to ensure that the correct modes were all set

up.
Example:
10 RST
20 REM START TO PROGRAM
A =-====-=

A
etc.

Related Keywords: CLS SCREEN

RUN
Syntax: RUN L
Where L is a line number

Purpose: RUN is used to begin the execution of a program currently in
memory, starting at the line number given by L, and clearing all variabies.

If L is omitted execution will begin from the lowest line number of the
program.

Example:

RUN 45
This will cause a program to begin execution at line 45.
Syntax: RUN file

Purpose: In this alternative form RUN will load the program file declared in
file and then commence its execution from the lowest line number.

Example:
RUK "TESTPROG"

This will Toad the program whose name is TESTPROG.XBS from disc and then
execute Tt,

Related Keywords: CHAIN LOAD

208

Ak e e Al

SAVE

SAVE

Syntax: SAVE “<ufns=",NI,N2

Purpase: This Command saves files/programs, currently in the computer's
memory, onto disc. When saving BASIC programs, or complete ASCII (.ASC)
files, N1 and N2 may be omitted, For object code (.0BJ) files,N1 and N? must
be declared.

N1 and N2 represent the start and end line of an ASCII file, or the start
and finish address of object code files repectively.

When saving files as ASCII files, the file extension .ASC mist be wused.
When saving files as object code files, the file extension .DBJ must be
used.
If the drive is omitted from within the file the current “"default drive"
will be assumed. The default drive is initially set up as 0 but can be
changed using the DRIVE command.
If the file type is not declared within <ufns then ¥BS will be assumed.
Example: SAVE "1:PROG.XBS"
This will save the BASIC Program file currently in memory onto the disc in
drive 1, giving it the name PROG. {assuming drive 1 is fitted to
EINSTEIN 256).
Example: SAVE"PROG®

This will save the program onto the disc in the current default drive, as
a £B3 type file. It will over-write any file of that name on the dise.

Example: SAVE"D:PROG.ASC"

This will save the whole of the program currently in memory onto the disc
in drive 0, as an ASCII file PROG.ASC.

Example: SAYE"T:PROG.ASC",90,150

This will save the section of the program currently in memory from line 90
to Tine 150 onto the dise in drive 1, as an ASCII file PROG.ASC.

Example: SAVE"1:TEST.0BJ",&8A3D, 49000

This will save the area of memory from location &BA3D to locatfen 29000
onto the disc in drive 1 as the object file TEST.OBJ.

NOTE: Remember to reserve an error of memary, for your object file, using
the CLEAR command.

Related Keywords: DRIVE LOAD

209

SCREEN

SCREEN
Syntax: SCREEN N
Purpose: This command selects graphics mode 2 or 6, or text mode 2, in

screen widths of -32,40,64 or 80 columns in text, or 256 and 517 pixels in
graphics. N can have values 0 to 6, according to the table below:

SCREEN MODE TEXT RESOLUTION (PIXELS)
0 Graphics 2 32 % 24 256 x 192
1 Graphics 2 40 x 24 256 x 192
2 Text 2 80 x 24 ne graphics in this mode
3 Graphics & 32 x 24 412 x 192
4 Graphics 6 40 x 24 512 x 192
5 Graphics 6 64 x 24 512 x 192
6 Graphics 6 80 x 24 512 x 192

In graphics mode 6, the background parameters in the GCOL commands have no
meaning, and any pixels can be any colour, i.e. screen attributes in colour
are bit mapped.

In graphics mode 2, colour is selected on a cell basis, there being 32
cells, each 8 pixels wide, Within each cell, there can only be one
foreground and one background colour, This mode is Einstein compatible.

In text mode 2 only one foreground colour is allowed for the whole screen,

The SCREEN command automatically clears the screen and clears sprites when
invoked. A form feed character EDEH] is sent to the selected output device.
When changing between screen modes, sprites are also cleared.

Related keywords: GCOL, TCOL, CLS32, CLS40

210

ol kr kr ot o/

o ¢k B0 R REY R RD O ORE ORT il M

SCRNS$ SEP

SCRN$ (Screen String)
Syntax: SCRN$(J)

J must be a value in the .range D to 23 (i.e. number of rows available on the
screen).

Purpose: This is a 5tring Function which will return the full string of
characters from a row on the screen, indicated by the value of J.

Examples:
X$ = SCRNS(11)

This will return the string of characters contained in row 11 of the
display screen in X3. .

PRINT SCRNS(11)
This will output the contents of screen row 11.

Related Keywords: LEFTS MID$ RIGHTS

SEP (Separator)
Syntax: SEP J
Where J is given as an ASCII value.

Purpose: This command is used to re-define the separator character used in
DATA and INPUT statements, J being the ASCII value of the required
character.

Under normal operation the separator is a comma (,) but this can be changed
by use of the SEP command.

One common application is to use 5EP 0. This is used when only one item s
required which is to include commas as part of the input data. It allows
the user to put any string of characters (including the comma} into an INPUT
or DATA statement as a single item.

On conclusion of the processing invelving the redefined separator character,
normal cperation can be restored by use of the SEP 44 command (44 being the
ASCIT value for the comma).

SEP can be used as a function to return the value of the current separator.

211

MOTE :

1) Some characters will not work well as separators with numeric data, the

full stop (.) for example. Obvious confusion could occur here with
decimal points,

2) Remember that SEP will affect DATA statements as well as INPUT
statments.

Examples:
SEP 43

This would change the separator te a + symbol as given by the ASCII value
43.

PRINT SEP
This will output the ASCII value of the current separator on the screen.
A = SEP

Thus A will contain the ASCII value of the current separator character.
The following example illustrates another use of SEP.

10 SEP 47:REM '/' IS SEPARATOR

20 INPUT "TYPE IN THE DATE AS DO/MM/YY =" 5 DAY ,MNTH, YEAR

30 PRINT "DAY IS *,DAY,"MONTH IS ";MNTH; “YEAR IS ";

YEAR s
40 END

This program will display the following.

TYPE IN THE DATE AS DD/MM/YY:

The date is then typed as - 14/12/84

As a result of the SEP command the slash symbol (/) 1s accepted in place

of the comma separator given in the corresponding part of the INPUT
statement. Program execution then continues and displays the following,

DAY IS 14 MONTH IS 12 YEAR IS 84

Related Keywords: INPUT DATA

212

RN I I YN Y

1 A B S S N 3 Y I Y YA

& BL L1

1]

SGN SHAPE

SGN (Sign)
Syntax: SGN(N)
Where N can be given either as a number or a numeric expression

Purpase: This is a Function which returns the sign of N (i.e. indicates
whether N is a positive or negative number).

The following values are returned-according to the given conditions.
N less than 0 a value of -1 is returned.

N equal to 0 a value of 0 15 returned

N greater than 0 a value of +1 is returned.

Examples:

PRINT SGN(-5.721) - a value of -1 appears on screen
(i.e. a negative number).

PRINT SGN(7.6219) - a value of 1 appears on screen
{i.e. a positive number).

PRINT SGN{O) = a value of 0 appears on screen
(i.e. a zero valuel.

Related Keywords: ABS INT

SHAPE
Syntax: SHAPE N.<string expressions=
N is the ASCII code nominated for a character.

<String expression> is the required data and nmust consist of 2 digit
hexadecimal numbers contained within quote marks ("").

Purpose: This command allows the user to define a character shape or
re-define an existing character.

ASCII codes 32 to 127 and 161 to 255 are used for the keyboard text and
graphic characters. Unless there is a need to redefine any of the characters
avoid using the codes in these ranges.

The following character codes do not have any shape programmed at power-up.

130 to 134, 142 to 154, 156 to 160

213

A shape consists of B bytes, each byte representing one row of the character

cell. The most significant bit of each byte 15 the Teftmost pixel of each
row.

IT the shape programmed is to be displayed in 40 column display, only the &
most significant bits will be displayed on the screen. When in 32 column
display or when defining a sprite shape all 8 bits are displayed,

& Mocel Significant BITS of asach BYTE

displayad in 40 column display

Two or more shapes can be defined from within a single command by adding B
bytes for each new shape, Each black of eight bytes will be assigned to the
next ASCII character code in sequence,

Example: The following "little man® shape is defined within one character
cell.

-

=y

The HEX values for each byte are placed into the shape command {in order
from the top downwards), and an ASCII code i selected (eg. 130). The
command would then appear as follows:-

SHAPE 130, "00 70 70 20 F& 20 50 88"

The shape can be called onto the screen as follows:-

PRINT CHR${130)

214

SIN

The shape can also be used with the SPRITE command.

If ASCII code 160 s used then the shape can be accessed from the keyboard
by pressing the GRAPH key and the SPACE bar simultaneocusly.

Example:
SHAPE 160,"00 70 70 20 F8 20 50 B8 00 88 50 20 F8 20 70 70"
The first 8 bytes define character code 160

The second 8 bytes define character code 161

Related Keywords: SPRITE MAG

SIN (Sine]
Syntax: SIN(N)
Where N is an angle given in radians.
Purpose: This is a Function which returns the SINE of N.
Examples:
A = S5IN(D.523599) - For an angle of 30°
This returns a value of 0.5 in A

The values are returned for use in expressions but can be output by using
the PRINT command.

PRINT SIN(1.0472) - For an angle of 60°
The value 0.866027 will appear on the screen,

Related Keywords: ATN C0S DEG TAN EXP

215

SIZE SPC

SIZE
Syntax: SIZE
Purpose: This is a Function which returns the size of MEmMOry available for
the program, variables, pointers, and strings, as a positive value in the
range 0 to maximum size of the system.
NOTE: Also used to clear space prior to a HOLD and MERGE.
Example: X = SIZE
This will return a value in X indicating the size of memory available,

Related Keywords:

SPC (Space)
Syntax: SPC(J)
Purpose: This is a function which prints J spaces. It is only valid within

a PRINT statement. It 1s different to TAB, 1in that TAE is absolute ti.e.
works on column numbers), whereas SPC is relative,

Example:
10 PRINT "ONE";SPC{10);"TWO"

which will produce:-

GHE‘-—[—DTH[I'

with 10 spaces between the 'E' and the 'T*

Related Keywords: PRINT TAE

216

L/

[LS A O & B § O A

Ll

i &F LT &0 BRI RER® A1 | il 11

19

SPEED

SPEED
Syntax: SPEED J
J can be any integer value from 0 to 255.

Purpose: This is a special command relating to output. It sets a delay on
character output, to the current output device, according to the value of J,

0 gives the longest delay i.e. slowest speed. 255 is the fastest speed,
(BASIC defaults to 255)

SPEED can also be used as a function to return the current set speed and the
value given can be stored as a variable.

Examples: SPEED 100

A1l output following this statement in a program will be slower than
normal (normal being 255).

PRINT SPEED

This will display the current value (as a number from 0-255) of speed set,
onto the screen.

SPEED = 200
A = SPEED
Thus A will contain 200,

Related Keyword: NULL

217

SPRITE SPRITE OFF

SPRITE

Syntax: SPRITE S,x,y,C,N

Purpose: This is a Graphics Command which sets up a particular sprite.

5 is the "sprite number" and can be in the range 0 to 31, This allocates
each sprite a priority (0 being the highest priority), this determines which
shape 1s masked when two sprites have the same screen position.

X and y are the co-ordinates which position the top lTeft hand corner of the
sprite on the screen. The range of values for x and y is -32768 to +32767.
C 1s a value in the range O to 15 indicating the foreground colour as
defined by the palette command (C §s optional and if omitted it will default
to the last previously specified value of foreground coleur). The background
colour 1s always zero, i.e. transparent.

M is the ASCII code number chosen to represent the sprite. ASCII codes 0 to
127 should be avoided, where possible, as these codes represent alphanumeric
characters, control codes and punctuation marks.

In screen modes 0 and 1, there are 4 active sprites per horizontal row,
whereas in screen modes 3 to 6, there are §.

screen mode 2 is a text only mode, and sprites are nat displayed.

Related Keywords: SHAPE MAG SPRITE OFF

SPRITE OFF
Syntax: SPRITE OFF S
Where 5 is given as a sprite number in the range 0 to 31.

Purpose: This is a graphics Command which will "turn off" the sprite given
by 5 (sprite number)
If 5 is omitted then all sprites will be "turned off".

Related Keywords: RST SPRITE SHAPE MAG

218

SQR STEP

SOR téﬂyare Eput]
Syntax: SOR(N)

Purpose: This is a Function which returns the square root value of N for use
in expressiogns,

If N 1s given as being less than 0 a QTY ERROR will occur.
Examples: X = SQR(22)

This returns a value of 4.69042 in X

PRINT SQR{25)

The result 5 will appear on the screen.

Related Keywords: EXP LOG LN

STEP
Syntax: FOR ¥ = N1 TO N2 STEP N3

Purpose: This command is used in FOR-NEXT loops to specify a particular
increment within the loop.

Example:
FOR I =1 TD 10 ETEP 2

Related Keywords: FOR TO NEXT 219

STOP STRS

STOP
Syntax: 5TOP

Purpose: This 1s similar to END but is used to terminate programs at various
points from which they may be restarted again,

The message BREAK IN L is displayed, where L is the line number at which
execution has stopped.

Program execution can be restarted using the CONT command, provided that no
alterations have been made to the program during the break (variables may,
however, have their values altered).

This command is useful when debugging BASIC programs as it allows sections
of the program to be executed and intermediate results inspected.

Related Keywords: CONT END

STR$ (String string)
Syntax: STRE(N)
Where N can be given as & numeric variable or numeric expression.

Purpose: This is a String Function which returns a string representation of
the value given by N.

The format in which the number is given by this function can be manipulated
using the FMT command and also the IOM 5 command,

Leading spaces are maintained by this function but NOT trailing spaces, in
respect of the numerical format output as a string.

Example:

A% = STRY (1.234)
This will give the string " 1.234" in A$

PRINT STR$ (1.234)
The string " 1.234" will be displayed on the screen.

FMT 2,3:A% = 5TR$ (37.7325)
This places the string " 37.733" into A% as a result of the combination of

FMT and the STR$ function,
thus A$ = "37,.733",

Related Keywords: ASC FMT LEFT$ LEN MID$ MULS RIGHTS SCRNS VAL

220

g —— p g o ki @ Ao & B o [——— [T———

STOP STRS

STOP
Syntax: 5TOP

Purpose: This 1s similar to END but is used to terminate programs at various
points from which they may be restarted again,

The message BREAK IN L is displayed, where L is the line number at which
execution has stopped.

Program execution can be restarted using the CONT command, provided that no
alterations have been made to the program during the break (variables may,
however, have their values altered).

This command is useful when debugging BASIC programs as it allows sections
of the program to be executed and intermediate results inspected.

Related Keywords: CONT END

STR$ (String string)
Syntax: STRE(N)
Where N can be given as & numeric variable or numeric expression.

Purpose: This is a String Function which returns a string representation of
the value given by N.

The format in which the number is given by this function can be manipulated
using the FMT command and also the IOM 5 command,

Leading spaces are maintained by this function but NOT trailing spaces, in
respect of the numerical format output as a string.

Example:

A% = STRY (1.234)
This will give the string " 1.234" in A$

PRINT STR$ (1.234)
The string " 1.234" will be displayed on the screen.

FMT 2,3:A% = 5TR$ (37.7325)
This places the string " 37.733" into A% as a result of the combination of

FMT and the STR$ function,
thus A$ = "37,.733",

Related Keywords: ASC FMT LEFT$ LEN MID$ MULS RIGHTS SCRNS VAL

220

g —— p g o ki @ Ao & B o [——— [T———

SWAP TAB

SWAP
Syntax: SWAP ¥Y1,V2

¥1 and V2 may be numeric or string variables, or array elements. They must
be of a similar type in any one statement otherwise a TYPE ERROR will occur.

Purpose: This statement "swaps" the contents of the variables ¥1 and V2 with
each other.

The command is very useful in "sorting" algorithms,
¥

Example:
SWAP A,C - the contents of A become the contents of C(and
vice-yersa.
SWAP D%,ES - the contents of D$ become the contents of E$ and

ViCE=versa.

SWAP A(I)}.B(I) - the array element of A{I) becomes the array element of
B(I) and vice-versa.
Related Keywords:

TAB (Tabulate)
Syntax: TAB(J1,J2)

Purpose: Prints characters (the ASCII value of) J2, to an ‘imaginary' print
head on the output device umtil the cursor reaches a position J1 columns
from the left of the "page”, or Column 0. If the print head {is past or at
the point J1, then no tab will occur.

If J2 is omitted, either a previously defined character will be printed, or,
(where not previously defined), a space. Any valid ASCII code maybe used
for J2, Uses include date on printed forms.

Example:

10 PRINT "MAME":;TAB(10,46); "TATUNG"
(ASCII 46 is a full stop code,
space is 32)

20 PRINT “ADDRESS";TAB(10); "TELFORD";
TAB{20}; "SALOP"

(J2 defaults to code 46)

This should give:-
MRME - o e e A s TATUNG
ADDRESS..css 00400, TELFORD, . .SALOP

Related Keywords: PRINT SPC SEP ZONE WIDTH

221

SWAP TAB

SWAP
Syntax: SWAP ¥Y1,V2

¥1 and V2 may be numeric or string variables, or array elements. They must
be of a similar type in any one statement otherwise a TYPE ERROR will occur.

Purpose: This statement "swaps" the contents of the variables ¥1 and V2 with
each other.

The command is very useful in "sorting" algorithms,
¥

Example:
SWAP A,C - the contents of A become the contents of C(and
vice-yersa.
SWAP D%,ES - the contents of D$ become the contents of E$ and

ViCE=versa.

SWAP A(I)}.B(I) - the array element of A{I) becomes the array element of
B(I) and vice-versa.
Related Keywords:

TAB (Tabulate)
Syntax: TAB(J1,J2)

Purpose: Prints characters (the ASCII value of) J2, to an ‘imaginary' print
head on the output device umtil the cursor reaches a position J1 columns
from the left of the "page”, or Column 0. If the print head {is past or at
the point J1, then no tab will occur.

If J2 is omitted, either a previously defined character will be printed, or,
(where not previously defined), a space. Any valid ASCII code maybe used
for J2, Uses include date on printed forms.

Example:

10 PRINT "MAME":;TAB(10,46); "TATUNG"
(ASCII 46 is a full stop code,
space is 32)

20 PRINT “ADDRESS";TAB(10); "TELFORD";
TAB{20}; "SALOP"

(J2 defaults to code 46)

This should give:-
MRME - o e e A s TATUNG
ADDRESS..css 00400, TELFORD, . .SALOP

Related Keywords: PRINT SPC SEP ZONE WIDTH

221

TEMPO

Example:
TCOL 9,12

Any text produced following this command will appear as Light Red
{foreground) characters on a Dark Green background (im respect of individual
cells). '

NMOTE: When a background colour other than O (transparent) is specified, a
CLS will fi11 the display area with the new background colour.

In screen mode 2, N2 has no meaning as there is no background colour in
screen mode 2, It can be specified, for convenience, but will have no effect
on the display. A1l characters have the same foreground colour. Changing
TCOL changes the foreground colour of the entire screen,

Related Keywords: BCOL GCOL PALETTE SCREEN

TEMPO
Syntax: TEMPO N
Where N is given as a number in the range O to 7.

Purpose: This command sets the tempo (speed) of the music output according
to the value given by N. (If TEMPO is not specified a value of 4, see table,
is assumed). ;

Each value of N represents a tempo as listed below:-

50 beats per minute
100 beats per minute
150 beats per minute
200 beats per minute
250 beats per minute
300 beats per minute
350 beats per minute
400 beats per minute

el O LTT o Ead P =t 3
R [R TP S (LR R

Example: TEMPO 3
This will set a tempo of 200 beats per minute for the music output.

Related Keywords: BEEP MUSIC P3G YDICE
223

THEN TIS

THEN
Syntax: IF =condition> THEN <=statement >

Purpose: This is used in the IF statement to direct the resulting sequence
of operation.

Example:
IF X = 10 THEN 120

Related Keywords: [F ELSE GOTO GOSUB

TI$ (Time String)

Syntax: TI$="HHMMSS"

Purpose: This command is used to set the real-time 24 hour cleck contained
within the system to a particular value given by HH as hours, MM as minutes,
and 5% as seconds.

On power up the clock is set to "00000" but once set by the TI$ command it
will continue to keep the time until the machine is switched off or reset.

The time may only be set to an even number of seconds, although both odd and
even numbered seconds are displayed.

The current time value can be returned using TI$ as a function.
Examples: TI§ = “174032"
This will set the clock to a time of 17 hours, 40 minutes, 32 seconds.
PRINT TIS
This will display the current time setting in the following format:-

HHMMSS

Related Keywords:

228

TO UNLOCK

TO

Syntax: FOR ¥=N1 TO N2

Purpose: This is used within the FOR statement in order to specify the upper
limit for a reguired loop.

Example: FOR x = 3 TO 19

Related Keywords: FOR NEXT STEP

URLOCK
Syntax: UNLOCK “<ufn>"

Purpose: This is a Disc Command which unlocks a previously locked file
{given by <file>) on the disc in the current default drive.

Files unlocked using this command may then be written to, erased, or renamed
as required.

If the =file= does not exist a NO FILE error OCCUrs.

Related Keywords: DRIVE DIR LOCK

225

UNPLOT VAL

UNPLLT

syntax: UNPLOT x,y

Where x and y are the co-ordinates of a point on the screen and can have
values in the range of -32768 to +32767(the screen grid is 256 pixels
horizontal by 192 pixels vertical).

Purpose: This is a Graphics Command which turns off a pixel which is
i1luminated i.e. the pixel at the co-ordinates specified is changed from
foreground to background. If the pixel is already in background, then the
pixel will remain unchanged.

Example:
UNPLOT 120,90

This will turn off the pixel at co-ordinates 120,90,
NOTE: In screen modes 2 to 6 inclusive, UNPLOT has no meaning. It's use 1in
these modes will not produce an error, but will have no effect on the
screen. It is used in screen modes 0 and 1 only.

Related Keywords: DRAW ELLIPSE PLOT POINT POLY

VAL tyﬁlue}
Syntax: VAL({=string expressions)

Purpose: This is a String Function which returns the numerical value of the
specified string up to the first non-numeric character.

("+","=",".", and "E" are regarded as numeric].

The "&" character is taken to indicate that a "hex number " will follow.

Examples:
VAL("1.234ABC")

This returns the value 1.234

PRINT VAL("™1.7993xyZ")

The result will appear on the screen as 1,7993,

VAL(“&" + "ABCD")

This gives a value of 43981 (i.e. decimal equivalent of EABCD)
Related Keywords: ASC EVAL STR$

226

L]

VDEEK VDOKE

VDEEK (Video Deek)
Symtax: VDEEK(I,d)

Where 1 represents a memory location, in 64K pages and J represents the page
number, 0 to 2.

Purpose: This is a Machine Code related command which operates in a similar
manner to DEEK with the following differences:

1) The memory operations take place on the VIDED RAM.

2] The video memory location given in I must be in the range 0 to 65535
(0 to &FFFF).

Related Keywords: DEEK DOKE PEEK POKE VDOKE VPEEK VPOKE

YOOKE (Video Doke)
Syntax: VDOKE (I,I1,I2,...,In)

Purpose: This is a Machine Code related command which operates in a similar
manner to DOKE with the following differences.

1} The memory operations take place on the VIDED RAM.
2) The memory location (I) must have values in the range 0 to £5535 (0 to

&FFFF).

Related Keywords: DEEK DOKE PEEK POKE VDEEK VPEEK VPOKE

VDP

YDP {£1deulgisp1ay Processor)
Syntax VDPN,d

Purpose: Loads register N of the display processor with the data, d. The
command can write to VDP registers 0 to 23, and 32 to 46, Values of N from
24 to 31 will result in a RANGE ERROR. d can haye any value in the range 0
to 255. Registers 0 to 7 are Einstein compatible in the range 0 to 285, A
summary of the registers is shown below.

The functions of the registers are detailed below. For a more detailed
explanation of how to use the display processor, refer to the "y99318
Technical Data Book" published by ASCII corporation/Nippon Gakki Co. Ltd or
"Einstein 256's Display Processor Explained™ by Syntaxsoft.

Register Functions

Mode Registers {write only)

b7 be b5 b4 b3 b2 bl b0 | VOP Register
Number
Mode Register O 0 DG IE2 IE1T M5 M4 M3 O 0
Mode Register 1 0 BL. IEB M MZ 0O 5I MAG 1
Mode Register 2 M5 LP TP CB VR O SPD BW B
Mode Register 3 LM 0 51 50 iL: E0 -NT DE 9
RO DG: sets the colour bus to input mode, and inputs data into the
VRAM.
IE2: Enable interrupt from Lightpen.
iE1: Enables interrupt from Horizontal line - see register 19
M5: Used to select the display mode,
M4 : Used to select the display mode. See mode table
M3: Used to select the display mode.
R1 BL; When = 1, screen display enabled. When 0, screen disabled.
[EOQ: Enables interrupt from Horizontal line - see register 19.
M1: Used to select the display mode.
N2: used to select the display mode, See mode table
5] When = 1, sets 16 x 16 sprites sixe; when = 0 sets 8 x8
sprite size,
MA Sprite expansion. 1 = double size; 0 = normal size.

228

RE M5: When = 1, sets the colour bus to finput mode and enables
mouse.
When = (0, sets the colour bus to output mode and disables
mouse.
LP: When = 1, enables 11ght pen. When = 0 disable light pen.
TP: Sets the colour of cade - to the colour of the palette.
CB: When = 1, sets the colour bus to input.

When = 0, sets the colour bus to output.

VR: Selects the type of Video RAM. Always set to 1.

SPD: 1 = SPRITE OFF:; O = SPRITE ON

BW: When = 1, sets black and white (32 grey levels) only affects
compnsite video output
When = 0, sets colour

RS LN: When = 1, sets vertical resolution to 212 pixels

When = 0, sets vertical resolution to 192 pixels

51: Selects simultaneous mode.

50: Selects simultaneous mode.

IL: When = 1, interlace

When = 0, non-interlace
EQ: When = 1, displays two graphic screens interchangeably by
Even field/0dd field,

NT: When = 1, PAL (313 1ines); when = 0, KTSC (262 lines).

For RGE output only).

bE-: When = 1, sets DLCLK to input; when = D, sets DLCLK to output

Table Base Address Registers [Write ﬂn]il

The table base address registers are a set of registers to declare the

addresses of tables in the YRAM.

MOTE: When these registers are accessed,
may receive depends on the display mode.
the unwanted bits.

Far this purpose,

the control codes that the screen

you must mask

b7 bé b5 b4 b3 b2 b1 bD | VDP Register
Humber

Pattern table
base register 0 Al6 Al5 A14 AI3 AIZ2 A1 AID 2
Colour table base | A13 A12 A1l AID A9 A8 A7 A6 3
address register
low arder bits
Colour table base 0 0 0 0 0 Al6 AlS Al4 10
address register
high order bits
Pattern generator Q D A6 AlS Al4 A3 A2 ATD 4
table base address
register

229

Sprite attribute Al4
table base
address register
Tow order bits

Al3 Al2 Al

AlD AS

A8 AT

[5prite attribute 1] 0 1] 1]
table base address

register high order
bits

0 a

Ale AlS

1

Sprite pattern 0 0 Alé AIS
generator table
|base address

register

Al4 Al3 AlZ AN

Colour Register (Write only)

The colour register is used to control
screen colours, and also blinking.

Einstein 256's text and background

-

b7 b6 b5 b4

b3 b2

b1 bO

YOP Register
Number

[Text Colour/
Backdrop colour |TC3 TC2Z TC1 TCO
reqister

BDZ BDZ BD1 BDO

7

TC3 to TCO: Specifies the text colour according the TEXT 1 and TEXT 2
modes ,
BD3 to BDO: Specifies the back drop colour in all display modes.
b7 b6 b5 b4 b3 b2 bl b0 |VDP Register
Mumber
Text Colour/ T23! o+ T2p T21 'T20 BC3 BC2 BCY BCO 12
Backdrop Colour
register

In Text mode 2,

if the attributes for blinking are set,

this register and set in R7 are displayed alternately.

T23 to T20: Text foreground colour
BC3 to BCO: Text background colour

text modes only

the colour set in

b7 bé b5 b4

b3 - b2

bl b0

YDP Register
Number

Blinking period ON3
reqister

ONZ2 ONT ONO

OF3 OF2 OF1 -OF0

13

230

T "

T3

(R 3| i i Y ok B I

'Y R

e '™

B UL Ut Y A LUt LU S I LI S

In the bit map modes (Graphics 4 to Graphics 71, the two pages are displayed
alternately (blinked). Place data in this register to set the display page
to an odd page to begin blinking. This register is alsp used in the Text

mode 2.

ON3 to ONO: even page display duration.
OF3 to OF0: odd page display duration

b7 be b& b4 b3 b2 bl bD |YDP Register
Number

Caolour burst
register 1 0 0 0 0 a 0 0 0 R20

alaur burst

egister 2 a0 o 1 1 1 0 1 1 R21
Colour burst
rEgister 3 0 0 0 0 0 1 0 1 R22

The above values are preset when the power is applied. If all values in the
above three registers are set to 0, the colour burst amplitude of the

composite wideo output will be zero.

Display Registers (Write only)

The display registers are used to control the display position on the CRT.

b7 bé b5 b4 b3 b? b1 b0 | VOP register
number
Display adjust V3 L V1 Vo HZ H2 H1 HO R18

register

The above register is used to adjust the display position on the CRT.

H = horizontal position in 2's complement; 0 = centre, 7 left, 15 right
V = wvertical position in 2's complement; O = centre, 7 down, 15 right

b7 b& b& bd B3 b2 bl b0 [VOP registen
number

Display offset po7 DO D05 D04 DO3 D02 DOl DOO R23
register

231

The above register determines the 1ine number on which the display starts.

start of display
EINSTEIN 256

I5 GREAT! |

end of display l___m______/(

R23 = 0

IS5 GREAT!
end of display [

start of display

EINSTEIN 256

R13 = 100

b7 bé b5 b4 b3 b2 bl bD |VDP Register
Number

Line Interrupt ILY IL6 “ILB - IL& IL3 IEZ2 ILY T ILO R19
Register

Specifies which active scanning line generates an interrupt

Access Registers [(Write only)

The access registers are used to access the register of the video display
processor VDP, or the VRAM.

b7 b& b5 b4 b3 b2 . bl bO|VDP Register
number

VRAM Access base |0 0 i] 0 O Ale Al A4 R14

address register

When accessing the YOP and the Video RAM (VRAM), set the high-order three
bits of the address in the VRAM access base address register.

232

s

Gl R R Rt b b kr f

| L

Ll

L A A 8 1 4 4 g |

When data is set in this register,
the data in the regis

carry from Al3,
MULTICOLOR, and TEXT 1 modes,

GRAPHIC 1, GRAPHIC 2,
is not automatically incremented.

and the VRAM is accessed,

if there is a

ter 15 automatically incremented. Im
the data in the register

painter

b7 b6 b5 b4 b3 b2 bl b0 |VDP Register
- number |
Status register 0 D 0 a 53 52 51 50 R15

Wwhen reading the VDP status registers (S0 to 59),
Status register pointer.

set the contents of the

b7 b b5 bd b3 b2 bl bO|VDP Register
numoer
Tolour palette | 0 O | — T8 i
address register
Control register]All a0 RS5 RS54 RS RS2 RS1 RSO R17
pointer

The control register pointer may be used to

automatically increment the data.

All =

Command Registers (Write only)

1 Auto increment disable; O = disable

access another register,

ar Lo

The following command registers are used when issuing commands to the VDP.

b7 b6 b5 bé b3 b2 b1 b0 |VDP Register
number
Source X low SX7 5Xé 5¥5 S5K4 SX3 sxz S¥X1 - sXo R32
register
Source X high 0 0 0 0 0 0 0 SKg R33
reqister
Source Y low - B SYS sY4 Y3 5Y2 SY1 5Y0 R34
register
Source Y high 0 0 0 0 a 0 5Y9 5Y8 R35
register
Destination X | DX7 Db DX5 Dx4 DX3 DXz DX1 DXO R36
low register
Destination X 0 o o 0 0 0 a DXB R37
high register
Destination ¥ | DY7 DY¥6 DY5 oY4 DY3 DYz DY1 DYO R38
low register
Destination ¥ 0 0 a 0 a 0 D¥3 DYs R39
nigh register
233

VSTAT

umber of
pixels, X low
register

NX7

N6

NX5

NE4

NX3

NEZ

N1

HXD E40

Number of
pixels, X high
egister

Mx8 R41

ixels, ¥ low
register

Eumher of

WY 7

NY6

NYS

NY4

NY3

NY2

NY1

NYQ R42Z

Mumber of
pixels, Y
high register

NYS

NY& R43

Colour register

CH3

ChZ

CH1

CHO

CL3

cL2

CL1

CLO R44

Argument
register

MXC

MXD

MAS

DIY

DIX

EQ

MAJ R45

Command
register

CM3

CM2

CM1

CMD

L03

Lo2

LOT

LOO Rd&

Related keywords: VSTAT

VSTAT (Video Status)

Syntax: YSTATN

Purpose: Reads the video display processor's status registers 0 to 9,

STATUS REGISTER O to 9 (Read Only)

The following status registers are read-only registers for reporting the

status
b7 b6 b5 b4 b3 bZ bI VDP Register
i Humber
Status F 55 i Fifth sprite number 50
registers O
3 Vertical scamning interrupt flag

When 50 is read,this flag is reset,

85: Flag for the fifth sprite
Five sprites are aligned on the first horizontal line (In the G3 to
G7 modes, 9 sprites are allowed).

£ Collision flag

Two sprites have collided.

234

(S Y N

Al

1 I 4

Al

110 4

MR

MM M M M

Al

MM MM

Fifth sprite number:
The number of the fifth (or ninth} sprite.

bY b6 b5 b4 b3 b2 bl by | VOP Register
Wumber
Gtatus
register 1 FL LP% Identification Mumber FH 51
FL: Lightpen flag (Lightpen flag set)

LPS:

If the 1ightpen is to detect light, this bit as well as the IEZ bit
must be both set in order for an interrupt to be enabled, When 51 is

read, FL 15 reset.

Mouse switch 2 (Mouse flag set)
The second switch on the mouse was pressed.
In this case, when 51 is read, FL 15 not reset.

Lightpen switch (Lightpen flag set)
The Tlightpen switch was pressed.
In this case, when 51 is read, LP5 15 not reset.

Mouse switch 1 (Mouse flag set)
The first switch on the mouse was pressed.
In this case, when 51 is read, LPS is not reset.

Identification number:

The identification number of the VDP chip.

FH: Horizontal scanning interrupt flag
Horizontal scanning interrupt (which is specified in R19) flag. If
IE1 is set, an interrupt iz enabled. When S1 is read, FH is reset.

b7 b& b5 b4 b3 b2 bl bD | YOP Register
Number

Status register|TR VR HR BD 1 1 ED CE 52

TR: Transfer ready flag
When the CPU sends commands to the VRAM and other devices, the CPU
checks this flag while transferring data. When this flag is set to
1, transfer may be done.

VR: Vertical scan line timing flag
During vertical scanning, this flag is set to 1.

HR: Horizontal scan line timing flag
During horizontal scanning, this flag is set to 1.

BD: Boundary colour detect flag
When the search command 15 executed, this flag detects whether the
boundary colour was detected or not.

EQ: Display field flag

When 0, indicates the first field.
When 1, indicates the second field.

235

VERIFY

CE: Command execution flag
Indicates that a command is being executed.
b7 bé b5 b4 b3 b2 bl b0 | VOP Register

Number

Column register X7 X6 X5 .. 53, XZ ..%x1 X0 53

low

Column register 1 1 1 1 1 1 1 X8 54

thigh

Row register Tow ¥y Y6 15 @ Y3 Y2 Y1 YO S5

Row register high| 1 1 1 1 1 N - -

The above registers are set to indicate the collision location of sprites,
the location of lightpen detection, and the relative movement of the mouse,

ICDlnur register c7 Ch L o S e ol s A 1 57

The above colour register is used when the POINT and VRAM to CPU commands
are executed. The VRAM data is set in this register.

Barder ¥ EX7 BX6 BX5 BX4 BX3 BX2 BX1 BX0 58
register low

Border X

register high 1 1 1 1 1 1 1 BX8 59

Ahen the search command is executed and the border colour has been detected,
the X co-grdinate is set in the above registers.

Related Keyword: VDP

VERIFY
Syntax: YERIFY file
Purpose: This 15 a System Command which checks a file on disc.

It is commonly used following execution of a SAVE command in order to check
that a program has been transferred to disc correctly.

Any error 15 reported as BAD DATA ERROR and a NO FILE ERROR indicates that a
program file i5 non-existent.

Example:
YERIFY "7:HICK.XBS"

This will check the disc in drive 1 for the BASIC program HICK and then
verify the the file,

Related Keywords: DRIVE SAVE LOAD e

VOICE VPEEK

VOICE
Syntax: YOICE M,N1,N2,N3,N4,N5

Purpose: This is a Sound Command which sets up a voice for use by the MUSIC
statement.

N is the "voice number®™ and can have values in the range 0 to 7.
Each voice then has given parameters as follaws:

N1 is the "noise period”, in the range 0 to 31. O represents the highest
freguency noise.

NZ 1s the "maximum amplitude" of notes, in the range 0 to 15, where D is the
gquietest and 15 the loudest sound,

N3,N4,N5 allow construction of the sound envelope where N3 represents the
“attack™, N4 represents the "sustain", and N5 the "decay" times of each note
played in a given channel, These timings are independent of the "note
length", so that it is possible to start a new note before the last one has
completed, or to complete a note before its time has expired, thus allowing
"legato" and "staccato™ playing. The values for all three timings fall
within the range 0 to 255 where 0 represents the shortest time.

Up to efight voices may be defined in this way, which can be invoked by means
of the letter ¥V within a MUSIC statement. e.g. VD selects voice 0,

Related Keywords: BEEF MUSIC PSG TEMPD

YPEEK (Video Peek)
Syntax: VPEEK(I)

: This is a Machine Code related command which operates in a similar
manner to PEEK with the following differences,

1) The memory operations take place on the Video RAM.

2) The memory locations specified by I must be in the range 0 to 65535.

Related Keywords: DEEK DOKE PEEK POKE VDEEK VDOKE VPOKE

237

VPOKE WAIT

VPOKE (Video Poke)
Syntax: VPOKE 1,J1,J2,..,dn

Purpose: This is a Machine Code related command which operates in a similar
manner to POKE with the following differences.

1)} The memory operations take place on the video RAM

2} Th? memory locations specified by I must be in the range 0 to 16383 (D to
&IFFF

Related Keywords: DEEK DOKE PEEK POKE VDEEK VDOKE VPEEK

WAIT
Syntax: WAIT J1,J2,43

J1 is a port number and J2 and J3 are data items treated as B bit binary
numbers.

Purpose: This command monitors directly the finput and output from a
particular I/0 port.

The command suspends execution of a program whilst it monitors the port
given by the value of J1. Execution will continue when a required condition,
controlled by the selection of the data for J2 and J3, exists at the port.

The data which appears at the port is combined with the two items of data
given in J2 and J3 in the following sequence.

1) The port data and J3 are combined using an EXCLUSIVE OR operation which
is performed bit-by-bit on the two numbers.

J3 is optional and may be omitted, If J3 is not used it is assumed to be 0.
Any XOR comparison with 0 simply produces a result identical to the port
data.

2] The result of the first operation is combined with J2 using an AMND
operation, again on a bit-by-bit basis. The result of this becomes the final
result.

3) The two steps above are repeated until the final result is non-zera. At
this point program execution will then continue.

The comparisons are made using the two tables given below.

238

ry I B [B i e 'R [] N

' |

LRI S B T I X B I A 1 9,

Al &by Rl B ORT WM

|-

"XOR" (Exclusive OR) TABLE

BIT SETTING
COMBINATIONS RESULT
A . R
0 0 0
0 1 1
] 0 1
] 1 0
“AND* TABLE
~BIT SETTING
COMBINATIONS RESULT
W R
a 0 0
0 1 0
1 0 0
1 | 1

a) These tables give all the possible combinations of settings for two bits.

b} Column A represents the setting (i.e. 0 or 1) of one bit, and column B
the setting of the second bit.

c) For each combination of setting a result is given in column R,
Thus if two bits are set to 0 and 1 respectively, and we are doing an “AND"
comparison, that particular combination is Tocated in the "AND* table and
the value of the result given in column R is read.
Example: WAIT &32,4FF,L0F
1) Execution of the program is suspended whilst the 8 bit user port (&32)
15 monitored and the bit setting first combined with the &0F data. Let us
assume that the bit settings at the port are as follows:-
00000711

11) This 1s now compared with the &0F data (J3) in accordance with the XOR
table.

&0F data - ooogI1m
Part data - Qooo1111
Results from

¥OR table - 00000000

111) The result from the XOR comparison is now combined with the &FF data
in accordance with the AND table,

&FF data = 11111111
Result from XOR

comparison = (0000000
Final RESULT of AND

comparison = 00000000

Thus a final result of 0 15 obtained.
239

iv] Execution of the Program remains suspended and the saquence qs
repeated until the bit settings at the user port produced a “non-zerg"
final result, at which point execution then continues.

In this example, for a "non-zero® final result to be obtained, one of the
following conditions must exist,

EITHER - any uf{the 4 most significant bits of the user port must be
“set¥ (1.e. 1)

OR - any of the 4 least significant bits of the user port must be "peset"
(i.e. 0)

Thus execution would be suspended until one of these conditions exist., The
following example i1lustrates this.

Example: WAIT &32,&FF,&OF

il 8 ?1t port set to 01101111 {i.e. 7 of the 4 most significant bits are
“set"),

11) XOR comparison

&OF = 000a1INM
Port data - 01101111

Result - 01100000

111) AND comparison
&FF = 11111111

esult of XOR - 01100000
Final result - @

Thus a "non-zero final result" i obtained and program execution will
then continue,

Example:
WAIT &32,&40

1) Let us assume a 00001010 setting at the 8 bit user port.
ii) "AND' comparison

&40 = 071000000
Part data - 00001610
esylt - 0

i1i) A zero result is given, therefore the Sequence repeats until a
non=-zero result is obtained.

240

e

WIDTH

Example: WAIT 432,540
i) B bit port setting - 00001010
i) "AND' comparison

&40 = 01000000
Port data - 010011
Result = 010a000o

iii) A "non-zero® result is given and therefore program execution will
continue.

1t can be seen that in this example execution is suspended until BIT & of
the port is set (1) (i.e. the condition required to produce a non-zero

result)

Related Keywords: INP OUT

WIDTH

Syntax: WIDTH J

Purpose: This is a special command relating to output, It sets the width of
the current cutput device, so that an automatic carriage return/line feed is
generated as soon as the column count reaches the value given in J.

This is useful in certain printers such as Teletypes and Teleprinters where
overprinting might occur when the print head reaches the end of a line.

Under normal operation the WIDTH is set to 0, when no automatic carriage
return/line feed is produced.

WIDTH can also be used as a function to return the current width setting.

Example:
WIDTH 20

This would invoke a carriage return/line feed at columnn 20 of the
putput.

Example:
PRINT WIDTH

This would display the value of the current width setting on the screen.

Related Keyword: ZONE

241

XOR ZONE

XOR (Exclusive OR}
Syntax: [XOR I

Purpose: This is a logical operator used in the evaluation/comparison of
statements.

Example:
PRINT CHRS(&61 XOR &20)

This example shows on application of XOR which results in the lower case
‘a' character (ASCII &61) being printed as upper case 'A'. The logical
process is illustrated below:-

0001 {EIH = "g¥)

10
AOR 00100000 (EUH}
RESULT 000001 (42, - "A")

H
Related Keywords: OR AND NOT

ZONE
Syntax: ZOKE J1,J2

J1 gives the value of the largest column number and is known as the zone
limit. J2 gives the value of the zone width in number of columns,

Purpose: This is a special command relating to the format of output. It

sets the zone width, and the largest column number for which printing to the
next zone will stay on the same line.

The command is used to change the settings of the TAB functions contained in
PRINT statements, according to particular requirements of output.

If omitted, J1 will default to 28 and J2 to 10.
ZONE can be used as a function to return the current values of J1 and J2.
Examples:

ZONE 32,16

This sets a zone width of 16 columns with column 32 indicating the zone
limit,

PRINT ZONE{Q) - this displays the current zone limit(J1)

PRINT ZONE(1) - this displays the current zome width {J2)

Related Keyword: WIDTH 242

r b " " ™ ™ (1 d] Pl i 4 =y rpy i i 3] P~ [S e

ey

™

CHAPTER 11
ERROR HANDLING WITHIN BASIC

The facility allows the handling of errors from within a BASIC program
rather than abandoning execution. The errors are simply allowed to occur
and are then dealt with by subroutines.

The following commands are used:

oM ERR &OTOD "Line No."
OM ERR GODSUB "Line Mo."

Cither of these two commands may be contained within a program 1isting. If
an error occurs after one of these commands then a GOTO or GOSUE is made to
the particular line number denoting the start of the error handling
routine(s) as defined by the user.

MAIN STREAM

ERROR ROUTINE

-mucu 10

RETURM TO MNEKT
STATEMEMT

If ON ERROR GOSUB “Line No." is used, the last statement of an error
handling routine should be a RETURN. Program execution starts at the
statement immediately following the one which caused the error.

when either of the two commands are used, an internal flag is set in order
to activate the above procedure.

This flag reverts to "normal" after the first error and will therefore need
cetting again by another "ON ERR" statement positioned either at the end of
the error routine, or soon after re-entering the main program.

OFF ERR
This command is used to restore the ON ERR flag to "normal® from within a
program, However when a program "ends" normaily, the flag reverts

automatically. When OFF ERR has been used, any subsequent errors will be
displayed as normal.

ERR,ERL,ERR%
These three statements are useful when included in the error handling

routines.
243

ERR - returns the code number of the last error thereby indicating the
nature of the error.

ERL = returns the line number at which the last error occurred,

ERRS = returns the error STRING, without the word "ERROR", corresponding
to the last error that occurred. This is useful when one particular

error is expected and avoids having to flag every possible kind of
error.

ON EOF GOTO “"Line No."
ON EOF GOSUB "Line No."

This 1s a similar operation to DN ERR but relates specifically to routines
which deal with encountering an "end-of-file" when “reading”.

The difference is that the ON EOF flag is not reset by the execution of an
ON EOF routine and therefore it remains in force,

OFF EOF

This is used to turn off the ON EOF mode. Any subsequent end-of-file
encountered will then cause an end of text error to be displayed. Again

when the program "ends" in the normal way, the ON EOF is automatically
turned off.

REMEMBER: -

ERRORS are only dealt with if they occur after any of the statements. The
programmer learns from experience where to situate the statements within a
program in order to be of any advantage to the program execution.

NOTE: For details on error messages and error codes, see Appendix A.

244

TF O FFE O FFL MY PP PP I MY T

Ty

L P . T N ()]

e

CHAPTER 12
CHAINING AND SEMI-CHAINING PROGRAMS

In addition to the normal use of the RUN and CHAIN commands in direct or
deferred mode, EBASIC provides the facility to semi-chain programs.

This allows several program to access a "common pool of routines" without
having to keep the same set of routines within each sub-program.

To do this the HOLD command is used immediately prior to executing a RUN or
CHAIN. Both RUN and CHAIN will restore a "held" program by re-setting the
text pointer as soon as the program is loaded, However, execution of the
resulting program will commence from the start of the added section not from
the beginning of the original progam.

COMMON

ROUTINES

HOLD — /)

SuUB
INITIAL SUB
ROUTINE ETC,
ROUTINES AROUTINE 2

The diagram illustates an original program consisting of a common routines
section and an initial routines section. The initial routines would only be
needed once to set up arrays, wvariables, memory space as in DIM and CLEAR
statements etc.

The HOLD/CHAIN combination separates the two sections such that the other
sub-programs illustrated can be called up in place of the initial routines
section each time. {The flow of the original program would be structured
such that the initial routines are executed before the line containing the
HOLD/CHAIN commands is encountered).

Thus:-

HOLD 1ine number :CHAIN"SUB1" calls up the 1st sub-program.
HOLD line number :CHAIN"SUB2" calls up the 2Znd sub-program.
HOLD line number :CHAIN"SUB3" calls up the 3rd sub-program.

Each time execution would continue from the beginning of the added
sub-program which can then access the COMMON ROUTINES section of the
original program.

This method saves file space and greately improves the efficiency of a
CHAIN, by speeding up the loading of each program.

245

NOTE: The line numbers of the sub-program must be selected so as to be
greater than those of the common routines section.

The example Mailing List program given in Appendix M 1llustrates the use of
this method of semi-chaining programs.

The original program consists of the common routines sectfon in lines 10 to
830 and the inital routines section in lines 1000 to 1110.

The HOLD/CHAIN combination is found in line 900 and the flow of the original
program is structured such that the initial routines (lines 1000 to 1110)
are executed before line 900 is encountered,

There are three sub-programs involved with titles "MSUB1", and "MSUB2", and
"M5UB3". These sub-programs are accessed according to the input in line 870

which places a value in N$} (given by the user response to the questfon
"which?")

245

s PP e N |

FE

‘i FiFi FFi Pl i (3 3 (3 & FVE F & |

CHAPTER 13
FILE HANDLING IN BASIC

FILE NAMING CONVENTIONS

The file naming conventions used in EBASIC require the following 3 items to
be specified when naming a file:

a) an optional, one character drive name.
b) a file name of up to 8 characters in length. .
c) a file type of up to 3 characters in length, known as the file extension.

Drive Name

The drive name, when used, is specified as a single number from 0 to 1. If
not given then the default drive 15 assumed. The default drive may be
changed at any time by use of the DRIVE command. '

File Name |
This is the name assigned to a particular file by the user. It may consist
of any combination of ASCII characters (i.e. from the character set), up to
B characters in length, with the exception of the following:

a) the characters .,"« ;:=7*>
b} characters with ASCII codes greater than 127.
t) characters with ASCII codes less than 32

Example: STLLY

File Type
This may consist of any combination of ASCII characters (i.e. from the
character set), up to 3 characters in length, with the following exceptions:

a) the characters .," =;:7*= >
b) characters with ASCII codes greater than 127.
c) characters with ASCII codes less than 32

There are 4 file types recognised by EBASIC. These are as follows:

1) ¥BS - This 1s a BASIC source file. If the "file type" is not specified
then XBS is assumed.

2] ASC - This is an ASCII program file. These files are uncompressed source
files. (XBS files contain "tokens" for reserved words whereas ASLC files
caontain the words in full as they appear in a 1isting).

3} 0BJ - This is an OBJECT file, or machine-code subroutine/data. A special
area can be set up within the memory for the storage of machine-code
routines by use of the CLEAR command. Anything stored in this area canm be
SAVEd as a .0BJ file, and LOADed into the area.

4) DATA FILES - Any other combination of characters specified for "file
type" will be treated as a data file. Data files consist of a series of
ASCII characters divided into one or more records, which can be serially
accessed by a BASIC program (in its broadest sense this category also
encompasses the three special file types .XB5, .0BJ, and .ASC).

247

The user may select combinations of characters for data file extensions
according to individual reguirements. The follewing are given as
suggestions.

-BAK for backup copies
DAT for data storage
LDOC for document files

Examples:
0:CATA.ASC - refers to an ASCII file named CATA. for a disc in drive 0.
1:5ILK,.XBS - refers to a BASIC source file named SILK, for a disc din
drive 1
0:MEMD.QBJ - ?ffers to an DBJECT file named MEMD, for a disc in drive
1:5ILLYDAT - refers to a DATA file named SILLYDAT, for a disc in drive

o

NOTE: When working in BASIC, file names are contained within guote marks (")
a5 shown in the example below:

"1:CATEL.XBS"

ACCESSING FILES

There are two commonly used methods for accessing files and these are known
aAsi=

a) Sequential Access.
b) Random Access.

a) Sequential Access
sequential Access is most often used for the manipulation of text or
index files, where records may be of variable length, and need to be
scanned (examined) seqguentially i.e. one after the other, starting from
the beginning of the file until the desired record location is found.

A

¥
RECORD O RECORD 1 RECORD 2| RECORD 3 |etc| &1A
START OF FILE EMD OF FILE

Each record should normally have a terminator, such as a carriage return
code. There is a special code to mark the end-of-file (EOF).

EBASIC generates an EOF code when closing a sequential file, if the last

operation was a WRITE, and will normally detect the end-of-file marker on
a READ.

244

b)

in end-of-file condition will occur if an attempt is made to read beyond
the last allocated sector of the file.

Random Access
Records stored in random-access files are normally of a fixed length, OR
of a variable length but contained within fixed-length blocks.

RECOHRD O | RECORD 1| RECORD 2| RECORD 3 | RECORD 4 | £vc.

START OF FILE END OF FILE
{NO MARKER)

When a file is opened the "record length® is specified. Whenever a file
input or output is required a "record number" is specified. This means
that there can be free movement about the file in a completely random
fashion, accessing only those records reguired.

Having accessed a particular record it is also possible to then read or
write sequentially to the file from that point onwards (even though a
random record length has been specified).

It is also possible, if required, to write a file with one record length,
and then read or write to the same file with a different record length.

4&n EOF marker is not supplied when closing a random-access file.
However, the end-of-file condition will occur when an attempt is made to
read a sector of the disc that does not exist.

Unfortunately, this will not always be the case with a non=existent
record, since the disc space may have already been created for 1t as a
side effect of writing another record which uses the same physical disc
sector. In that case it will be read as an empty record.

FILE-HANDLING COMMANDS
The commands which provide the facilities within file-handling are listed

below: =

DRIVE OPEN CREATE
CLOSE APPEND PRINT#
INPUT# INCH# INCH#(M)

Refer to Chapter 10 for full details.

249

CHAPTER 14
PROGRAMMABLE SOUND GENERATOR

A1l the functions of the Programmable Sound Generator (usually abbreviated
to PSG) are controlled by the ZBO processor by means of a series of register
loads. Each register of the P5G relates to a specific function invalved
with the creation of a particular sound or sound effect. The following
table indicates the respective functions and value ranges of the P3G
registers.

Register Function Range
0 Channel A - lower 8 bits Pitch 0 to 255
1 Channel A - upper 4 bits 0to 15
2 Channel B - lower 8 bits Pitch 0 to 255
3 Channel B - upper 4 bits 0to 15
4 Channel C - lower B bits Ptich 0 to 255
& Channel C - upper 4 bits 0to 15
B Noise period 0 to 31
7 Enable 0 to 255
8 Channel A - Amplitude 0 to 31
9 Channel B - Amplitude 0 ta 31
10 Channel C - Amplitude 0to 3l
11 Envelope period lower 8 bits 0 to 255
12 Envelope pericd upper 8 bits D to 255
13 Envelope shape/cycle 0ta 15
14 Port A 0 to 255
15 Port B 0 to 285

REGISTERS 0 to 5

The values stored in these registers determine the frequency, or pitch, of
the putputs of the respective chamnels A, B and C. Registers 0 and 1
control the pitch of Channel A, register 2 and 3 the pitch of Channel B, and
registers 4 and 5 the pitch of Channel L.

To Determine the Pitch

The pitch generated by each of the 3 channels is determined by two registers
for each channel. The values stored in the two registers represent a 12-bit
number (0 to 4095 in decimal).

The equivalent 12-bit number, in decimal, can be found from:-
TP = 266 x RU + RL
Where:=

TP is the decimal equivalent of the 12-bit tone period number.
RL 15 the lower 8 bits {(Register O for Channel A}
RU is the upper 4 bits (Register 1 for Channel A)

RL may be thought of as a "fine tune" register and can have any value in the
range 0 to 255.

RU may be thought of as a “"coarse tune” register and can have any value in
the range 0 to 15.

23l

To find the pitch:-

Pitech = 2 x 10° Hertz
16 x TP

Thus the higher the register values, the lower the pitch.

To find the Register Yalues

Given the desired pitch, it is possible to find the values for the two
registers for each channel.

First find the Tone Period (TP) from:-

P =2 x 10°
16 x pitch (in Hertz)

Having determined the tone period, the register values can be obtained as
follows:-

RU+RL = TP

256 56
Thus RU is given by the integer of (TP + 256) and RL is given by multiplying
the remainder from TP by 256
256

Example:
Required freguency is 100Hz - what are the register values for Channel A?

For channel A RL is register 0 and RU 15 register 1

Calculating the Tone Pericd (TP):-

To find the value in register 1 (R1)

Rl = 1250 {ie integer of 1250 + 256
256

=_4 (1250 + 256 = 4.88281)
Remainder from division is 0,B828]
.. register O (RO) = 0.BB28] x 256

= 278

Although the range of frequencies which can be produced by the sound
generator 1s from 30.5Hz to 125kHz, this is, in practice, Jlimited by the
capabilities of the audio amplifier/speaker combination, which sets an upper
frequency limit of about 15kHz. (In practice, the human ear also sets a
1imit of about 10 te 17kHz, depending upon the age of the listener),

252

REGISTER &
This register controls the frequency of the noise generated by the PSG. It
is similar to the pitch registers, previously described, except that there

is only one register, and the range of noise freguencies produced is from
dkHz to 125kHz.

To determine the Noise Frequency

Noise frequency = 2 % 10° Hertz
16 x Rb

Ré represents the contents of register 6 (in decimal), and can have values
from 0 to 31.

Similarly, given the noise frequency:-

Thein RE = 2 x 10°
16 = Noise Frequency (Hertz)

REGISTER 7

This is an 8-bit controel register which is used to enable noise and pitch on
channels A, B and C, and to control the direction of the keyboard scan
ports, A and B.

REGISTER [

B7 | 86 [B5 | B4 | 83 [B2 |81 | BO|

.‘#H,,r*"

Keyboard Bit EHoiae Generator| (Pitch Generator
Direction Channel Channel
B|A ClB]|A C|lB]|A

Bits 0 to 2 - Enable pitch generator on channels A, B and C
Bits 3 to 5 - Enable noise generator on channels A, B and C

A logic '0' in bits 0 to 5 will enable the respective channel (ie O=on,
1=0ff)

Bits 6 and 7 - A '0' in bits 6 and 7 will configure the keyboard ports as
inputs, whilst a *1' will configure them as outputs. The machine software
normally configures port A as output and port B as input (i.e, B6 = '1', B7
= IUI}

NOTES: Care should be excercised when setting up this register, as writing
to bits 6 and 7 could result in the keyboard being disabled.

The PSG command in BASIC expects entry in decimal or hexadecimal. It would

be wise to select values for this register which do not change the setting
of bits & and 7 (as configured by the machine software).

253

REGISTERS 8 to 10
These registers contral the amplitude of the signals generated by each of
the channels A, B and C, and also selects the "amplitude mode". Reqister &
controls channel A, register 9 controls channel B, and register 10 controls
channel C.

NOT USED

|B7[86]Bs] B4 B3] B2] B1] BO

Amp1itude d=bit “fixeq"
"Mode" amplitude level

8its 0 to 3 - Define the "fixed" leye] amplitude of a channel according to
the value Toaded for each register (values from 0 to 15)

Bit 4 - A '0" 1n bit 4 selects “fixed leyel amplitude" mode, whilst a '1°
will select "variable level amplitude” and hence enable the Envelope
Generator. It follows therefore, that bits O to 3, defining the value of 3

“fixed" level amplitude, are only active when bit 4 = '0' (§,e, they are
ignored when bit 4 = 1 and amplitude control passes to the Envelope
Generatar)

NOTE: To turn a channel off the all zeros code is used in bits 0 to 3 (i.e.
Qoo)

REGISTERS 11 and 12

These registers are used to control and vary the frequency of the envelope
generated (i.e. the Envelope Period Control).

The values stored in these two registers represents a 16 bit number, known
as the Envelope Periad (EP), the Tower 8 bits being the envelope “fine tune"
(RT1) and the upper 8 bits the envelope “coarse tune" (R12).

To Determine the Envelope Period (EP)

EP = 266 x CT + FT

Where:=-

EP 1s the decimal equivalent of the 16 bit Envelope period number.

FT is the decimal equivalent of the "fine tune" register bits (i.e. lower 8
bit number).

CT is the decimal equivalent of the "coarse tune® register bits (i.e. upper
8 bit number).

To Determine the Envelope Frequency

Envelope Frequency = 2 x Tﬂﬁ
256 x EP

254

kfE EF ABF EE EEF EF iEF EF Ik

Ll LRl

| U Y B Y B Y B Y B A

Ll

MM

To Find The Register Yalues
Given the envelope frequencies it is possible to find the values of the two

registers.
First find the Envelope Period (EP} from:-

ep = 2 x 10°
256 x Frequency

Having determined the envelope period, the register values can be obtained
as follows:-

CT + FL = BB
756 256

Thus CT is given by the integer of (EP:256) and FT is given by multiplying

the remainder from EP by 256
256

Example:
Required envelope frequency is 0.5Hz - what are the register values?

Calculating the Envelope Period (EP):-

ep =2 x 10 = 15,625
56 % 0.5

To find the value of register 12 (coarse tune register CT)

Register 12 {CT)= 15,625 {i.e. integer of 15,625
Egﬁ + 256)

= 61 (15,256 + 256 = 61.035156)

Remainder from division is D.035156

.. register 11 (FT) = 0.035156 x 256
=9

REGISTER 13

The lower 4 bits of register 13 control the envelope shape and cycle. The
upper 4 bits of the register are not used.,

Each of the lower 4 bits controls a function in the envelope generator as
follows:-

Bit 0 - HOLD

Bit 1 - ALTERNATE
Bit 2 - ATTACK
Bit 3 - CONTINUE

“0L0 - When set to logic '1' limts the envelope to one cycle, holding the
last count of the envelope counter (0000 or 1111, depending whether the
savelope counter was in a count-down or count-up mode, respectively).

255

ALTERNATE - When set to logic '1', the envelope counter reverses count

direction {up-down) after each cycle.

ATTACK - When set to logic '1', then envelope counter will count up {attack)

from 000D to 1111; when set to logic '0', the envelope counter will count

down (decay) from 1111 to 0000.

CONTINUE = When set to logic '1', the cycle pattern will be as defined by
the HOLD bit; when set to logic '0', the envelope generator
will reset to 0000 after one cycle and hold at that count.

NOTE: When both the HOLD bit and ALTERNATE bit are set to '1', the envelope
counter is reset to its initial count before holding.

EMYELOPE SHAPE/CYCLE CONTROL

1A BITE
B3 B2 B BO
] |¢ GRAAFHIC REFMEREHTATION
a lal 13 OF ENVELOFE AFMERATOR
B |wmiale auTeERT
Es| " r nm
HHHAL
l::',- =1 % ol
in|m e |mfe
@ |3|d|x :{"'-R
4 |0)1|x :ﬂ
gl1]|ala "H“\.
e 1] 0] DW
IEAERE IR 1Hd
w110 I/'_
cai o “Hf\x!ﬂkuf“\ff\uf“x
|
w1l 1!_,;‘1
| 1
_"IE _EF i THE ENVELGFE FERIOD
(OURATIGN OF ONE CYGLE]

Fig 14.1 Envelope Shape/Cycle Control
REGISTER 14 and 15

These registers function as intermediate data storage registers between the
PSG/CPU data bus and the two I/0 ports available on the PSG. Using these
registers for the transfer of 1/0 data has no effect at all on sound
generation.

To output data from CPU to a peripheral on I/0 Port A

1. Latch address R7 (select Enable register)

2. Write data to PSG [setting bit 6 of R7 to '1')

3. Latch address R14 (select IDA register)

4. Write data to PSG (data to be output on I/0 Port A)

256

Frrl T I Tl Frrl Irl Irl Tl T Y

Tr

ryY

& i

To input data from 1/0 Port A to CPU

1) Latch address R7 (select Enable register)

2} Write data to PSG (setting bit 6 of R7 to '0")
3) Latch address R14 (select IOA register)

4) Read data from PSG (data from I/0 Port A)

NOTES: Once loaded with data in the output mode, the data will remain on the
1/0 port{s) until changed either by loading different data, by applying a
reset or by switching to the input mode.

when in the input mode, the contents of registers 14 andfor 15 will follow
the signals applied to the I/0 port(s). However, transfer of this data to
the CPU bus requires a "read" operation as described above.

SOUND PROGRAM

On the master disc, there is a sound program included to allow the user to
experiment with the various register values of the Programmable Sound
Generator and observe the results.

To use the program
1. Ensure that BASIC is loaded.
2. Run the sound program by typing RUN "SOUND™.

3. Use the cursor keys to position the cyan coloured cursor to the desired
register, and bit, and then key 0 or 1 to set the desired bit value. The
effects of any changes are heard immediately.

NOTE: the two most significant bits of register 7 are masked (indicated by
¥'s). These two bits enable the keyboard, and do not affect sound
generation.

The program does not allow access to register 14 and 15. These registers
are concerned with scanning the keyboard, and do not affect sound
generation.

Try experimenting with the program. When you have found the sound you want
to create, make a note of the register value(s) for use in your Own
programs,

SOUND YARIATION

Relative Channel Yolume

The independently programmable amplitude contrel for geach channel allows up
to 16 levels if using the processor controlled amplitude mode (bit 4 of
reqisters 8, 9, or 10 = 0). In the case of a decaying or steady note, when a
note is played or "fired", a frequency may be set up in the coarse and fine
tune registers and then an amplitude value placed in the respective register
10, 11, oar 12, The value which is placed to play the tunme can be an
indenendent variable, allowing channels to play their respective melody
lines with varying force.

257

Decay

One difference between sounds is the speed with which the note gains and
loses volume. This is known as attack and decay. If all of the notes can
be decayed at a uniform rate, the automatic envelope generator canm be set to
produce a decaying waveform., Each of the three channels can have the same
decay constant but differing playing times to simulate the same instrument
with differing note strike-times,

Other Effects

The addition of variable noise to any or all of the channels can produce
effects such as "breathing" with a wind instrument. Or noise can be used
alone to produce a drum rhythm. The fact that the noise dominant frequencies
are variable allows “synthesizer" type effects with simple processor
interaction.

Other pleasing effects include vibrato and tremolo, the cyclical variation
of the frequency and volume. Because an fintelligent microprocessor is
controlling the effect, they can be all keyed to the tune itself or to other
external stimuli.

SPECIAL SOUND EFFECTS

One of the main uses of the P3G 15 to produce non-musical sound effects to
accompany visual action or as a feature in itself. The following sections
outline techniques and provide actual examples of some popular effects.

To prevent you being deafened or werse, a short delay routine (FOR I =1 to
100:NEXT) followed by RST may be put before the END statement. Please note
that this may affect any program variables held, as well as graphics. It
should be used with care.

Tone Only Effects

Many effects are possible using only the tone generation capability of the
P36 without adding noise and without using the PSG's envelope generation
capability. Examples of this type of effect would include telephone tone
freguencies (two distinct frequencies produced simultaneously) or the
Eurgpeag]Siren effect listed below (two distinct freguencies seguentially
produced .

EUROPEAN SIREN SOUND EFFECT

The following BASIC 1isting will produce the European Siren effect.

10 REM SIREN EFFECT

20 FOR 1=0 TO 9

30 P56D,254:P561,0

40 PSG7,126

50 P3G, 15

60 FOR J=1 TO 300:NEXT
70 P5G0O,86:P5G1,1

B0 FOR J=1 TO 300:NEXT
90 NEXT I
100 P5GE,0
110 END

258

T -4 | = N FiF [= | N F™i FFi FFi X & | L & | § & FrF FyY FF 5 [4 (R & | T iTi W

P

Moise Only Effects

Some of the more commonly required sounds require only the use of noise and
the envelope generator (or processor control of channel envelope if other
channels are using the envelope generator),

Examples of this, listed below, are gunshot and explosion. In both cases
pure noise is used with a decaying envelope.

In the examples shown the only changes are in the length of the envelope as
modified by the coarse tune register and in the noise period.

GUNSHOT SOUND EFFECT
The following BASIC Tisting will produce the effect.

10 REM GUNSHOT

20 FOR J=1 TO 4

30 PSGH,15:PSGT T

40 PSGR,16:P569,16:P5G10,16

RO PSG1Z.16

60 PSG13,0

70 T=RND{2000):FOR I=1 TO T:NEXTI
BD NEXT d

90 END

EXPLOSION SOUND EFFECT
The following BASIC 1isting will produce the Explosion effect

10 REM EXPLOSION

20 PSGE,31:P567,71

30 P3G 8,16:P569,16:P5610,16
40 P5G12,100

50 P3G13,0

60 END

Frequency Sweep Effect

The Laser, Whistling Bomb, Wolf Whistle, and Race Car sounds, listed below,
all utilize frequency sweeping effects. In all cases they involve the
increasing or decreasing of the values in the tone period registers with
variable start, end, and time between frequency changes. For example, the
sweep speed of the Laser is much more rapid than the high gear accelerate in
the race car, yet both use the same computer routine with differing
parameters.

Other easily achievable results include "doppler" and noise sweep effects,

The sweeping of the noise clocking register (R6) produces a "doppler" effect
which seems well suited for "space war® type games,

259

LASER SDUND EFFECT

The

10
20
30
40
50
60
o
80
a0
100
110
120

following BASIC listing will produce the Laser Sound effect,

REM LASER

PG/, 126

P3GE,15

FOR I=18 TO 255 STEP 40
PS5G0, I

NEXT

FOR 1=255 TO 18 STEP-10
PS5G0, I

HEXT

P3G,7 7F

REM

END

WHISTLING BOME EFFECT

The

10
20
30
40
50
B0
70
B0
90
100
110

following BASIC listing will produce the Whistling Bomb effect.

REM WHISTLING BOMB
PSG7,126

P5G8,15

FOR I=1 TO 2585
PS5G0, L

NEXT
P566,31:PSG7,71
P5GB,16:P5G9,16:PSG10,16
P3G12,100

P5G13,0

END

Multi-Channel Effect

Because of the independent architecture of the PSG, many rather complex
effects are possible without burdening the processor. For example, the Wolf
Whistle effect below shows two channels in use to add constant breath
hissing noise to the three concentrated frequency sweeps of the whistle.
Once the noise is put on the channel, the processor only need be concerned
with the frequency sweep operation.

WOLF WHISTLE SOUND EFFECT

The

10
20
an
40
50
&0
70
80
90

following BASIC 1isting will produce the Wolf Whistle effect.

REM WOLF WHISTLE
P5G6,1:PS67,110:P5G9,9
P5G1,0:P568,15

FOR I=64 TO 32 STEP-.35:P5G0,I:NEXT
FOR I=0 TO 150:NEXT

FOR I=64 TO 48 STEP-.17:PSGO0,I:NEXT
FOR I=48 TO 104 5TEP.5:PSG0,I:NEXT
P5G8,0:P5G9,0

END

260

I’y o mr oy 1 M mrE oY m

.

m ™ "1 " m

"

T Tr

r

™

s B BF BRF BF B &8 L 1 Y

RACE CAR S0UND EFFECT

The following BASIC 1isting will produce the Race Car effect, including gear

changes.

10 REM RACING CAR

20 P5G3,15

30 P5G7,124

40 P5G8,15:P569,10

50 5=11:F=4:GOSUBIID

60 S=9:F=3:GOSUB11D

70 S=6:F=1:G0SUB110

B0 P5GB,0:P5G9,0

90 END
100 REM SWEEP ROUTINE
110 FOR I=5 TO F STEP-1:P3G1,I
120 P5G0,255

130 FOR J=255 TO O STEP-1:P3G0,J
140 NEXT J,1

150 RETURN

261

' 'S T U LI LI

CHAPTER 15
GRAPHICS TECHNIQUES

This section has been included in arder to illustrate some of the more
simple techniques used to produce "graphic effects” within BASIC.

SIMPLE DRAWINGS

Simple drawings, shapes, and patterns can be produced on the screen by use
of the following facilites which can be manipulated in either 40 column

display ar 32 column display.

Lines.
The DRAW command will produce straight lines from one specified point to
another specified point on the screen {co-ordinates being used to position

each point).

The command also contains a qualifier which specifies the type of line to be
drawn (full,dotted,dashed etc.).

Circles/Ellipse.
Circles and E11ipses can be drawn by use of the ELLIPSE command, which again
may also specify the type of line to be used, [dots, dashes, etc.].

The position of a circle or ellipse is fixed by specifying the co-ordinates
of the respective centres within the command.

Folygon.
The POLY command is used to draw polygons with varying numbers of sides and
again the type of line to be used may be specified within the command .

The position of a polygon 1is fixed by specifying the co-ordinates of the
centre within the POLY command.

Colour.
To select a particular colour for the lines produced by the DRAW, ELLIPSE,

and POLY commands the GCOL command is used. {ie. Graphics colour].

GCOL normally preceeds the particular command it relates to in a program
listirng and may specify any one of 16 different colours.

Example
The following program illustrates the method of producing simple coloured

drawings on the screen using the DRAW and ELLIPSE commands, Carefully
type in the program 1isting and note the result when it is RUN.

263

10
20
30
40
50

60
10

80
90
100

110
120
130
140
150
160
170
180
190
210
220
230
240
250
254
255

270

290
300
310
320
330

370
350

410
420
430
440
450
460
470
4380
490
500
510
520

REM SPACESHIP
REM HULL

CLS BCOL13
GCOL 9

DRAW 120,75 TO 90,80 TO 80,100 TO 80,130 TO 90,150 TO 110,160 TO

140,160 TO 160,150 TO 170,130 TO 170,100 TO 160,80
DR.IHIE{IBIITDIEIDTE

DRAW 170,120 TO 185,120 TO 185,110 TO 190,100 TO 175,100 TO 180,110

TO 180,115 TO 170,115

DRAW Bﬂ 120 TO 65,120 TO 65,110 TO 60,100 TO 75,100 TO 70,110 TO

70,115 T0 80,115

DRAN 50,80 TO 70,40 TO 65,40 TO 65,35 TO 80,35 TO 80,40 TO 75,40 TO

95,79

DRAN 160.80 TO 180,40 TO 185,40 TO 185,35 TO 170,35 TO 170,40 TO

175,40 TO 155,79
GCOLT1

ELLIPSE 92,130,4
ELLIPSE 102,130,4
ELLIPSE 125,130,5
ELLIPSE 150,130,4
ELLIPSE 160,130,4
ELLIPSE 100,110,6
ELLIPSE 150,110,6
ELLIPSE 125,115.3
DRAM 130,100 TO 130
DRAN 120,100 TO 120,30
FOR 1=35 to 95 STEP 5
DRAW 120,1 TO 130,1
MEXT I

6COL3

H_Ilﬂl,lm T0 120,120 TO 130,120 TO 130,100 TO 120,100
DRAM 110,160 TO 105,175 TO 100,177

DRAM 125,160 TO 125,175 TO 130,180

DRAW 140,160 TO 145,175 TO 142,178

REM BUG

GCOL3

ELLIPSE 40,40,10
ELLIPSE 27.40.3
ELLIPSE 53,40,3
ELLIPSE 36.43.2
ELLIPSE 44,43,2
DRAM 36,35 TD 36.37 TD 44 35 TO 36,35

DRAN 45,31 TO 45,25 TO 47, 7,24 TO 44,24 TO 44,
DRAW 35,31 TD 35,25 TOD 33 24 TO 36,24 TO 36
GCOL1

DRAW 34,48 TO 30,55
DRAW 28,53 T0 32,57
DRAW 46,48 TO 50,55
DRAM 52.53 TO 48,57
REM MARTIAN

GCOL9

DRAN 200,60 TO 205.65 TO 210,60 TO 200,60

ELLIPSE 205,67,2

GCOLT1

DRAW 200,50 TO 210,50 TO 215,30 TO 195,30 TO 200,50
ELLIPSE 205,55.5

DRAW 203,57 TO 207,57
264

Iy e rrF Fi i i i i 'Y e i @ ¥ 't & | 'S & [ep——

PP

g888
SRESS

o
b |
=

6

3

5 TO 197,25 TO 197,24 TO 201,24 TO 201,30
10,25 TO 213,25 TO 213,24 TO 209,24 TO 209,30

45

45

EEEEEE

g

el
55
SEELLEE

g
g
T IFEEEEEE

TO 191,44 TO 199,48
TO 219,44 TO 211,48

2
:

0,50
610 GCOL3

620 ELLIPSE 205,
630 ELLIPSE 205,40,
640 ELLIPSE 205,35,2

650 GCOL1S

660 PRINT B2,21;MUL$("*",38)
670 END

Doing programs l1ike these can often be made easier, [despite the "I draw at
the keyboard" problem), using 1mm square, A4 size linear graph paper. There
are available in some stores special printed "screen sheets" for planning
graphics. (Don't forget that in graphics modes, 0,0 is at the bottom left
of your screen.) and that the first digit is along the base line (left to
right) and the second digit is up the screen, (bottom to top). See ORIGIN
command.

MOVEMENT

Simple.
There are several methods which can be utilised to create an impression of
simple movement in graphics.

Perhaps the most fundamental way is to use a loop within a program 1isting
which will print a shape on the screen, then apparently “"rub it out" and
print it again in a new position. This is similar to the process involved
in making cine films produce movement on a screen.

Te create the impression of a character or shape moving between two
specified points it is necessary to draw it in several positions between the
peints, and erase the last drawn character immediately before to printing
each new one,

The smaller the distance between each position, the smoother will be the
movement. If the positions are too far apart then the movement created will
be more 1ike a jumping action from one place to the next.

Example
Suppose we wish to make a horizontal l1ine appear to move down the screen.
The sequence of operations required would be as follows:-

1. Draw the 1ine in its initial position in a contrasting colour to the
background.

2, Draw the line again in exactly the same position but this time using
the same colour as the background (this gives the effect of "rubbing out"
the line).

3. Re=draw the line (in a contrasting colour) in a new position which is
a relatively small distance from the original position.

265

4. Draw over this line using the same colour as the background [(ie.
repeat as in 2 above),

5. Repeat as in 3 above - and so0 on,

Thus the sequence continues, selecting a number of positions until the final
location has been reached.

Try the following example:

10 CES
20 GCOLG
30 DRAW 70,120 TO 180,120
40 GCOL4
50 DRAW 70,120 TO 180,120
60 GCOLG
70 DRAW 70,100 TO 180,100
BOD GCOL4
90 DRAN 70,700 TO 180,100
100 GCOLE
110 DRAW 70,80 TO 180,80
120 GCOL4
130 DRAW 70,80 T0 180,80
140 GCOLE
150 DRAW 70,60 TO 180,60
160 GCOL4
170 DRAW 70,60 TO 180,60
180 GCOLG
190 DRAW 70,40 TO 180,40
200 GCOL4
210 DRAW 70,40 TO 180,40
220 GCOLG
230 DRAW 70,10 TO 180,20
240 END

Before reading any further type in the above listing (remember to yse the

NEW command in order to clear any existing programs) and observe the result
when you RUN the program,

The speed of operation makes the line appear to move from it's initial
pasition to the final location.

We can give the movement a continuous effect simply create a Toop by sending
control back to the line which represents the beginning of the sequence,
This is done by replacing line 240 with the following:-

240 GOTO 30
Add this new line and then sit and watch,

Remember to use ‘SHIFT BREAK' to break out of the loop once it is set inm
motion. Use CLS ENTER to clear the sCrean,

266

T f'0 TF 'F1 O'F1 /L 'FFL 'L OMPFYOOTE PR OPTLOORTL O ITL IPL BT W1 T e reew

"Fi

The following example wuses this method to illustrate "rubbing out" and
"movement" in respect of smoke coming from a ships' fumnnel. Type in the
following listing and note the result.

10 CL5

20 GLOL15

30 DRAW 0,60 TO 55,60

40 DRAM 185,60 TO 240,60

50 REM HULL

60 GLOLG

70 DRAM 60,50 TO 180,50 TO 190,70 TO 160,70 TO 157,65 TO 90,65 TO 80,70 TO
65,70 T0 60,75 TO 50,75 TO 50,70 TO 60,50

B0 REM FLAGS

90 &LOLI2

100 DRAW 65, 70 TO 65,105 TO 75,100 TO 65,95

110 GLOL10

120 DRAW 180,70 TO 180,100 TO 185,100 TO 185,95 TO 180,95
130 REM CABIN

140 GLOL14

150 DRAW 100,65 TO 100,90 TO 110,%0 TO 110,80 TO 150,80 TO 150,65
160 REM FUNNEL

170 GLOL1

180 DRAW 120,80 TO 120,100 TO 130,100 TO 130,80
190 REM CIRCLES

200 GLOLG

210 ELLIPSE 115,75,3

220 ELLIPSE 125,75,3

230 ELLIPSE 135,75,3

240 REM SMOKE

250 GCOL1

260 DRAM 126,103 TO 134,103
270 GCOL4

280 DRAM 126,103 TD 134,103
290 GCOL1

300 DRAM 133,105 TO 141,105
310 GCOL4

320 DRAM 133,105 TOD 141,105
330 &COL1

340 DRAM 138,107 TD 142,107
350 GCOL4

360 DRAM 138,107 TO 142,107
370 GCOL1

380 DRAM 140,110 TO 143,110
390 GCOL4

400 DRAM 140,110 TD 148,110
410 &COL1

420 DRAM 145,112 TOD 151,112
430 GCOL4

440 DRAM 145,112 TD 151,112
450 cCOL1

267

460 DRAW 149,114 TO 154,114
470 6COLA

480 DRAM 149,114 TO 154,114
490 GCOL1

500 DRAW 152,116 TO 158,116
510 &COL4

520 DRAW 152,116 TO 158,116
530 60TO 250

Again use 'SHIFT BREAK' to break out of the loop and CLS to clear the
screen.Another example 9is given below to illustrate the “rubout® and
"movement® effect but in this case the FOR-NEXT statement has been used to
create the required loop for the sequence.

10 REM FANLINE

20 CLS

30 FOR J=1 TO 10

oL1

OR I=50 TO 200 STEP 10
OL RND(13)+2

20,50 to 200,I

XT I

FOR 1=200 TO 50 STEP -10
100 GCOL1

110 DRAN 50,50 TO 200,1

120 NEXT I

130 NEXT J

140 BCOL4

150 END

gﬂ“ﬁ

I—‘

LE3BES
il

There are in fact two loops in this example. An outer loop using J (lines
30 and 130} and an inner Toop using I (lines 50 and 120).

The inner loop on I creates the necessary movement cycle and the outer loop
on J causes the whole cycle to repeat 10 times,

Don't forget to clear both screen and memory.

USE OF SYMBOLS

Imaginative wuse of keyboard characters and symbols can often produce
“graphic effects",

For example the asterisk (*) and hash (#) symbols are commonly used to make

up borders by printing lines of characters in succession (horizontal and
vertical).

268

4 & 3 4 4 TP FFEil e I i [o FIFi 1 4. e [} 4 & a | FEi % o | T T] T e [—— [——

FFI

i R0 Y EF &R AT

| B B B Y B L |t

11

& R B BT

Lines of Symbols.
The MUL$ command can be used to produce a number of characters in a single

line as follows:=
PRINT MULS$("**,30)

This will print a 1ine of 30 asterisks across the screen.

PRINT MUL$("#",25)
This will print a Tine of 25 hash symbols across the screen.

Type in the two statements given above {separately) and observe the result
when you press ENTER. Clear the screen using CLS.

A line of symbols/characters can be placed anywhere on the screen by
specifying the co-ordinates of the first character of the line using the

PRINT @ command.
PRINT@ 8,9,MUL$("*",15)

This will print a line of 15 asterisks across the screen starting from the
character position 8,9 on the imaginary “character grid® of the screen.

The "character grid" is different from the "pixel grid". The character grid
ig numbered 0 to 39 horizontally from left to right and O to 23 vertically
from TOP to BOTTOM in "40 column display”, and O to 31 horizontally (left to
right) 0 to 23 vertically (top to bottom] in "32 column display”.

Movement of Symbols.
Lines of characters/symbols can be made to move down the screen in a similar

process to making drawn lines mave.

In this case a line of "space" needs to be printed over the top of the line
of characters to produce the "rub out" effect. A new line of characters is
then printed in a Jower position and the process repeated as before unti]
the characters reach the final location.

Changing the vertical component of the character grid co-ordinates in the
PRINT® command will alter the position of the l1ine of characters on the
ccreen. A FOR-NEXT loop can be set up to carry out this process thereby
producing movement of the 1ine down the screen (or up) as illustrated by the
example given below:-

10 CLS

20 FOR I =1 TO 20

30 PRINT®10,1,MULE("*",20)
40 PRINT®10,I,MULE(™ ",20)
50 NEXT I

269

A second FOR-NEXT loop could be introduced in order to cause the sequence to
;:peat a given number of times and this is illustrated by the following
sting.

10 CLS

20 FOR J=1 TO 5

30 FOR I=1 TO 20

40 PRINT@10,I,MULS("*",20)

50 PRINT@10,1,MULS(" *,20)

B0 MEXT I

f0 NEXT J

This will cause the sequence to be repeated 5 times as given by the FOR-NEXT

Toop J. Try the abave example.

Alternatively, a continuous cycle could be set up by the use of the GOTO
command as shown below in line B0, “NEW" then add program, first.

10 CLS

20 FOR I=1 TO 20

30 PRINTE10,I,MULS{"*",20)
40 PRINTR10,I,MULS(" * 20
50 NEXT I

60 GOTD 20

%n this case 'SHIFT BREAK' would then have to be used to break out af the
oop.

The following is another similar example but presented slightly differently.
Try to work out the sequence before running the program in the computer,

10 REM ADVANCE

20 CLS

30 LET A="# # #"

40 LET B%=" ®

50 FOR J=1 TD &

60 FOR I=1 TO 20

70 BCOLG

80 PRINTE10,I;MULS(AS,5)
90 PRINT@10,I;MUL$(BS,25)
100 NEXT I

110 NEXT J

120 BCOL4

130 CLS
140 END

270

il 1 ™ | .] - | il N | L F

The example given below illustrates movement across the screen. In this
instance it is the horizontal component of the character co-ordinate in the
PRINTE command which 15 manipulated.

10 CLS

20 FOR I=10 TO B0
30 PRINTRI,12;"*"
40 PRINTRI,12;" ™
50 NEXT I

B0 GOTOZO

Use 'SHIFT BREAK' to break out of the loop when required then clear the
memory, (NEW)..

SHAPES
The characters and symbols which can be accessed from the keyboard are
simply regarded as shapes by the computer which make up the character set.

Each shape (character/symbol) is defined and constructed within a grid
pattern of BxB pixels. The example in Fig.15.1 illustrates the formation of
the letter E in the character set.

Fig. 158.1

Once constructed (or defined) within this grid pattern each shape
(character/symbol) 1s allocated a "code number" for reference. The code
number is a decimal number in the range 0 to 255 and is known as the ASCII
code for a particular shape. The computer then uses these ASCII codes in
order to recognise and use particular shapes during processing.

A table is given in appendix D which illustrates the ASCII codes and
respective characters. It will be seen that codes 128 to 160 are apparently
left free.

Facilities are provided within EBASIC which allow users to define
(construct) their own shapes, symbols, or redefine the character set if so
desired but we would not recommend the latter if there is a lack of
experience. some of the ASCII codes from 128 to 160 contain contral
characters but the following codes are free to be allocated to shapes
defined by the user without affecting the existing character set:

130,131,132,134,142 to 154,156 to 160

271

Defining a Shape.

The first stage in defining any new shape is to use an 8x8 grid pattern of
sgquares on which to construct the desired character. Look at the example
given in Fig.15.2. which illustrates a "1ittle man".

Fig.15.2

Remember, each square of the grid pattern represents a single pixel an the
screen, thus each shape constructed in this manner will be of a similar size
to the existing keyboard character set when displayed on the screen,

Each horizontal row of 8 squares on the grid represents what is known as 1
byte of data, and each pixel square in any row represents what is known as 1
b1t of that byte of data. Thus the grid is made up of 8 bytes of data
stacked horizontally on top of each other. Fig.15.3 illustrates this.

—

Each row af

B saqueares repreasenmis

1 BYTE of dalw

Ewch squars represanis

1 BIT af wssch BYTE

Fig.15.3

Ancther point to consider when constructing shapes on the grid is that in 32
column display all the squares of the grid may be used whereas for normal 40
column display the two most right hand columns of squares must be left blank
{since they are not displayed in this cass). In other words the last two
BITS of each BYTE must be Teft blank when defining shapes for use in &0
column display. 272

BASIC expects the data which defines a shape to be entered in hexadecimal
format. Fig. 15.4 shows a suggested 'grid' for the calculation of the Hex
numbers for the shape definition. Each 8 x 8 pattern is divided 1into 2
nibbles per row f(a nibble is 4 bits]). This makes conversion into
hexadecimal convenient, as per "little man" example following.

High Low
nibble nibble

23 22 21 20 23 22 21 20

Fig.15.4

SHAPE 159,"00 (That's the space above the head],
"“00 70 (4+2+1=7 Low nibble = 0)
"00 70 70 (and again)
o0 70 70 20

{High nibble 2, Low nibble 0)
“00 70 70 20 F8
(High nibble 8+4+2+1=15, loap
up Decimal 15 in the table:
Its F. Low nibble = 8)
"00 70 70 20 F8 20
(High nibble 2, Low nibble O]
"00 70 70 20 F8 20 30
(High nibble 4+1=5, Low nibble=0)
"00 70 70 20 F8 20 50 88
{High and Tow both = a)

So the shape line is:-

SHAPE 159, “00 70 70 20 F8 20 50 88"
which will put the shape into memory. The best way to check it is:

PRINT CHR$(159),

If you've succeeded, the shape will be printed on the screen,

273

Movement of a Shape.

The principles of simple movement as described earlier can also be applied.
The following example enters the shape "little man" and then makes it appear
to move.

10 CLS 32

20 SHAPE 150, "00 70 70 20 F8 20 50 88"
30 FOR I=10 TO 30

40 PRINTRI,12,CHRE(150)

50 PRINTEI,12," »

60 MNEXT I

70 GOTO 30

Type in the listing and note the result when the program is RUN. The 'SHIFT
BREAK' will have to be used to break out of the loop.

Type in the following example and observe the result when the program is
RUN.

10 REM ARMY ADVANCE
20 CLS 32

30 SHAPE 150, “00 70 70 20 F8 20 50 gg"
40 LET A$=CHR$(150)

50 LET B§=" "

60 LET C$=A$+B3

70 BCOLE

80 FOR I=1 to 20

90 PRINT@10,I,MUL$(C$,12)
100 PRINT@10,I,MULS{BS.24)
110 NEXT 1
120 GOTO 80

It will be necessary to use the 'SHIFT EREAK' to break out of the loop once
it is set up.

Now define a character shape of your own, using the method described
previously, then use it in the above example by replacing the data in the
SHAPE command (line 30) with your new data relating to the shape you have
defined.

RUN the program with your new shape 1in.

Use 'SHIFT BREAK' to break out of the loop, clear the screen. Key NEW ENTER
to clear the memory followed by BCOL4 to return to normal backdrop colour,

274

Building Shapes.

It is possible to build up larger shapes by printing several individual
character shapes adjacent to each other. This is known as contiguous
graphics. To produce extended shapes of this kind the following procedure
should be adopted.

1) Draw the whole shape on grid paper.
2) Divide the complete shape up into Bx& grids.
3) Define each 8x8 grid as an individual shape with its own ASCII CODE.

4) Individual grid shapes on the same level or line can be printed next to
each other by use of the STRING CONCATENATION facility as follows:-

AS=CHR${140)+CHRS(120)+CHRE(130)+.....

Thus A$ would contain the shapes listed together according to the ASCII
codes specified. PRINT A$ would then display the shapes side by side on the
screen.

&) Lines of shapes can be positioned by use of the PRINTE command.

eq. PRINT @12,15,A%
PRINT 12,14,B% etc.

Using the method outlined above, larger shapes can be displayed on the
SCTEEN.

Type in the following example which uses the principles putlined above, and
observe the result when the program is RUN (note that line 20 sets 32 column
display for this example}

10 REM ALIEM

20 CLS3?

30 SHAPE 130,"081422410103070F1F3F 7FFFFFFFFFET
FBFCFEFFFFFFFFE7 1028448280C0EOFD"

40 SHAPE 134, "OFOFOFOFQFOFOFOFETFFFFFCFCFFFFFF
E7FFFF3F 3FFFFFFFFOFOFOFOFOFQFOFO"

50 SHAPE 138, "0000000003030303F0FOFOFOFCFCOCOC
OF BFOFOF 3F 3F 303000000000C0C0COCO"

60 AS=CHRS(130)+CHR$(131)+CHR$(132)+CHRS(133)

70 BS=CHRS(134)+CHR$(135)+CHRS(136)+CHRE(137)

80 C3=CHR$(138)+CHR$(139)+CHRS(140)+CHRE(147)

90 PRINTE 12,10;A%

100 PRINTE 12,11;:B%

110 PRINTE 12,12;C%

120 END

Note how each SHAPE command (lines 30,40,50) gives the data for four shapes
thereby allocating consecutive ASCII codes from the first one specified.
Thus the complete shape which appears on the screen consists of three 1ines
of shapes, each line containing four adjacent shapes.

275

Now clear the screen and return to normal 40 column display, (CLS40).

Try the following example which makes use of the built up shape again.
Observe the result when the program is RUN and examine the listing so as to
understand how the application of simple movement has been used by adopting
the priaciples deseribed previously,

10 REM ALIEN MOVE
20 CL532
30 SHAPE 130,"081422410102070F |F 3F FFFFEEEFFFET
FBFCFEFFFFFFFFET102844B8280C0EQ0FQ"
40 SHAPE 134, “OFOFOFOFOFOF OFOFE 7FFFFFCFCFFFFFE
E7FFFF3F 3FFFFFFFFOFOFOFOF OFOFOF "
0 SHAPE 138, "00000000030303F0FOFOFOFCECOCOCOR
OFOF OF 3F 3F 30300000000000C0COC0C0"
60 A$=EHR$EISDJ+CHRI{T31}+CHR${132}+CHR$[133J
70 B3=CHR$(134)+CHRS(135)+CHRS(136)+CHRS (137
80 C3=CHRS(138)+CHRE(139)+CHRS({ 140)+CHRS (141)
90 FOR I=1 TOZ20
100 PRINT@ 12,1,A%
110 PRINT® 12,1+1,B%
120 PRINT@ 12,1+2,C5
130 PRINT@ 12,1,MULS("",4)
140 PRINT@ 12,1+41,MULS(""*4)
150 PRINT@ 12,I+2,MUL$("",4)
160 NEXT I
170 GOTO 90

You will notice that the shape appears to be flashing. This is because the
time taken to draw the shape and then “rub out" is fairly slow therefore the
movement is not quite as smooth as with a single character shape. The next
section explains a different method which overcomes this problem.

Use 'SHIFT BREAK' to break out of the loop, and CLS40 to return to normal 40
column display. Position the disc with side B uppermost in the drive and
then save the program as follows:-

i} Type in SAYE "ALIEN®
i1} Key ENTER

276

SPRITES

Sprites provide an alternative method of manipulating shapes on the screen.
The shapes are defined using grids of 8x8 or 16x16 pixel squares but the
SPRITE command in conjunction with the MAG command allows magnification of a
particular shape, and more versatile movement.

Sprites 'exist' on what are known as “sprite planes". If we imagine a
number of glass sheets stacked up one behind the other, but each so thin
that the naked eye perceives them as one, then we have a comparison with
sprite planes on the screen. Fig 15.5 illustrates this principle.

- TEXT/GRAPHICS
T PLAME

Fig.15.5

There are 32 sprite planes in all and they are numbered from (to 31. Shapes
drawn on different sprite planes can overlap, therefore, creating a 3
dimensional effect. By careful planning of the sprite plane numbers the
effect of one shape moving in front of, or behind, another can be created.

For example a train could appear to move behind a building but in front of
some trees by using different sprite planes for each shape accordingly.

The lower the sprite number, the nearer to the eye it becomes. Thus a
sprite numbered 4 would appear to be in front of a sprite numbered 6, on the
screen. (1e. lower numbered sprites have display priority].

There are four modes of magnification number 0, 1, 2, 3. They are
specified by use of the MAG command.

eg. MAG 2

217

Modes O and 1.

Modes O and 1 apply to a shape which has been defined. on & single 8x8 pixel

grid as shown in Fig.15.6. In mode O the shape remains as a single Bx8
pixel character,

Fig.15.6

In mode 1 the single 8x8 shape is doubled in size (magnified) to occupy an
area equivalent to a 16x16 pixel grid. Each original pixel is in fact made

4 times larger, resulting in a grid of B8x8 large pixels as shown in Fig.
15.7,

olafolafalelala

ofifr|v|e|e|o|e Grid patigrn wiimg O'x
of1[1|4]alo[ala

alelilolelalela In the wmply esguares #nd
10 qii|o|afa 1's In ihes whaded squares
glajr|oja|lo|ale

olifo|e|e|elalo el the ahspa,
ijgj@j@lijo)oo

Fig.15.7

Try the following examples which serve to illustrate the use of modes 0 and
1, and compare the results.

i) 10 €LS32

20 SHAPE 140,"00 70 70 20 FB 20 50 88"
30 MAG 0 :

40 SPRITE 4,110,100,6,140

111710 CLS32

20 SHAPE 140, “00 70 70 20 FB8 20 50 88"
30 MAG 1

40 SPRITE 5,150,100,8,140

Notice that the first sprite is not cleared and qs alse affected by the
second MAG command (ie. MAG 1),

sprites cannot be cleared by the usual CLS but must be "turned off" by use
of the SPRITE OFF command. Key CL540 Enter to return to 40 column display.

Now type SPRITE OFF and key Enter to clear the screen, Key NEW ENTER to
clear the memory.

278

'T F'T Tr FPL OMTL PP OITY O FPTL I ITD Pl OWE R

Tl

Fl !

Jd B d

T TrI

T

Tl

Modes 2 and 3.

Modes 2 and 3 apply to a shape which is built up from four Bx8 pixel grid
shapes to form a single shape on a 16x16 grid [(in the same manner as
described in building shapes).

In mode 2 the four shapes are printed as a single shape on a 16x16 pixel
grid as shown in Fig.15.8

16

16
Fig 15.8

When "defining” the complete shape the data for each 8x8 grid should be used
with the SHAPE command in the order shown above. MNote also that the selected
ASCII code number must be O or a multiple of 4 (e.q. 156, 144 etc). In mode 3
the shape on this 16x16 grid is doubled in size to occupy an area equivalent
to 32x32 pixels.

Work through examples which i1lustrate the use of modes 2 and 3, and compare
the results.

10 CL532
20 SHAPE 152, "00604040414141E17F3F1FD00O000000
00303030B0OFCB4FCFFFEFCODDOOODOOO™
30 MAG 2
40 SPRITE 6,70,100,6,152

2. 10 CL332
20 SHAPE 152, "D0D604040414141E17F3F1F0000000000
00303030B0OFCB4FCFFFEFCODDQQ00000"
30 MAG 3
40 SPRITE 7,150,100,6,152

Notice again that the first sprite is not cleared and is also affected by the
second MAG command (i.e. MAG 3). Type CL540 and key E to clear the screen
then type SPRITE OFF and key ENTER to remove the sprites. The sprite
definition, however, remains in memory until a reset or cold start is used.

MOVEMENT OF SPRITES

sprites can be made to move by setting up a loop which continuously changes
the values of the co-ordinates in the SPRITE command.

For vertical movement, change the y co-ordinates.

For horizontal movement, change the x co-ordinates

279

The example given below illustrates how 8 FOR-NEXT loop can be used to make
a sprite move horizontally across the screen by continuously changing the x
co-ordinates in the SPRITE command.,

10 CLS32

15 BCOLZ

20 SHAPE 0, "0060404141F17F 3F0000000000000000 "
30 SHAPE £, "003030B0F C54FFFEDDDOOODDO0O00000"
40 MAG 2

50 FOR I=230 TO 1 STEP -1

60 SPRITE 0,1,132,4,0

70 NEXT I

80 GOTO 50

Be careful not to have too many on a line at any one time.

Having observed the result of this program use the ESC key to breakout of
the loop then key CLS40 ENTER to return to 40 column text mode. Type SPRITE
OFF,0 and key E to clear the sprite from the screen. Type BCOL4 and key
ENTER to return the backdrop colour to normal.

The KEY command can be used to great effect when typing in experimental
lines or altering lines:-

KEY 0, "CLS40:SPRITE OFF: LIST
(Don't forget that the code is GRAPH & ENTER together),

When function key 0 is pressed, the screen will clear to 40 column mode, the
sprites erased and the Tist put up on the screen, You can, of course, code
all the keys for a variety of little Jobs when experimenting in BASIC.
Filling Areas Of Colour

Finally just a brief word about the FILL comnmand. This provides a facility
for filling enclosed areas of line drawings with colour,

By specifying a single point within the boundries of an enclosed area, then
that area can be filled with a selected colour,

The format of the FILL command 15 as follows:-
FILL x,y.n

x and y indicate the specified point within an area, and n sejects the
colour { a number in the range of 0 to 15),

280

| S 9 B Y S 8

| % I 1 4

uwl Al

11

LN I Y R N

MO M N MM MM

Try the following, which i1lustrates the use of this command.

10
20
30
40
50
&0
7a
80
ao
100

CLS
GCOL10

DRAW 100,40 TO 140,40 TO 140,70 TO 100,70 TO 100,40

DRAW 140,55 TO 170,58
DRAW 100,40 TO 70,55 TO 100,70
ELLIPSE 180,55,10

FILL 120,55,6

FILL 90,55,1

FILL 180,55,12

END

281

CHAPTER 16
MACHINE CODE LINKAGE

MACHINE-CODE 5SUB ROUTINES

Quite often programs (particularly games programs) use a combination of
BASIC and machine code.

Machine code 15 a method of writing programs which "talk" directly to the
computer without the necessity of an interpreter (ie. a direct linkage to
the machine operating system)., Thus execution is faster because the delay
introduced when converting from one language to another is no Tlonger
present.

BASIC can be used to create the main core of a program and then subroutines
written in machine code can be linked into it. This 15 quite useful when a
large amount of graphics is inveled, the faster machine code sections
producing spectacular effects on the screen..

Machine code subroutines are linked into a BASIC program by use of the CALL
command which has the following format.

CALL I

I refers to the "start address" of a particular routine required (ie, the
location in the computers memory store where the particular machine code
subroutine starts). It can be "called up" into use at any point in the main
program. The address given in I can be in either decimal or Hexadecimal
format.

Example: CALL ROFOO

This will access a machine-code subroutine stored in memory starting at the
location &OFOO

Obyiously machine-code routines need to be placed into memory before they
can be accessed by the CALL command.

Some routines are already in store as an integral part of the machine
"operating system®™ and the BASIC. For example the routine which handles
error messages is found at location &06CF.

Generally machine-code subroutines accessed by the CALL command are those
which have been created by the user for a particular program and placed into
MEmO’Y .

Program listimgs found in magazines and other publications oftem illustrate
the use of machine-code routines but the writing of machine-code programs is
beyond the scope of this book, The user must therefore research other
publications for further information on the subject.

Areas in memory can be reserved for machine-code subroutines by the
facilities offered with the CLEAR command, thus avoiding any clash with
BASIC programs when being stored.

283

MEMORY LOCATIONS AND CONTENTS

Memory locations are listed in Hexadecimal in ascending order starting from
0 for identification purposes. Each location is referred to by a four digit
hexadecimal number which is known as the address for the data it contains.

e.q9. &0013
&012E Memory Locations
2150

Each memory location can hold 1 BYTE of data represented by a two digit
hexadecimal number.

e.q. &34
&3F Two digit HEX numbers
&AZ

(Remember that the '&° symbol is used as a prefix to denote Hexadecimal
numbers in documentation).

We can imagine these memory locations to be stacked vertically on top of one
another. For example the spaces between the rungs of "a ladder could be
envisaged as memory locations into which data can be placed.

Ta access the memory locations directly from BASIC the two commands PEEE and
POKE can be used.

The PEEK command allows the user to examine the contents of a particular
memory location {or address) by using it as follows:-

PRINT PEEK(I)
Where [indicates the particular memory location
e€.9. PRINT PEEK{&41FD)

This will return an dinteger in the range of 0 to 255, according to the
contents of the location specified (in this instace %41FD). The integer
will be displayed on the screen.

The POKE command allows the user to insert data to a particular memory
lacation {or address) as follows.

POKE T,EVGE20E3,En

This will place the wvalues of the expressions E1, to En into memary
locations starting at the location given by I.

2.9. POKE &5100,&77,&34,4CD, 434

This wWill place the values &77,534,4CD, 534 into locations
&5100,45701,45702,%5103 respectively. Thus:-

&5100 contains &77 (ie. 119 decimal)
5107 contains &34 (ie, 52 decimal)
85102 contains &CD (ie. 205 decimal)
&5103 contains &3A (ie., 58 decimal)

284

I rr rr al =y b d iy T o T » ¥ re T a] i oo e i =y

e

d B BE AL AR BT WML AR B AR O BRF Y R A R T

' U Y

Al

MM

Try entering these values and then use PEEK to check the contents of the
locations.

care should be taken if using this facility to avoid corruption of any
essential utilities programs which would "crash® the computer.

Some selected memory locations contain data for various functions relating
to the operation of the computer. It is the corruption of these by careless
use of the POKE command which should be aveided. e.g. location &011E -
contains the data which determines the number of characters which can be
used in a single 1ine of input. This is referred to as the length of input
buffer [BUFLEN) and is 126 characters (ie. &7E).

These selected locations are known as SCRATCH-PAD LOCATIONS. Some
scratch-pad locations are labelled with a “"pointer® (PTR). The *pointers”®
are numbered from 1 to 24 and can be used to access those particular

locations.

Thus the PTR command can be used as an alternative to POKE in order to
change the contents of any of those particular 24 locations. The PTR
command has the following format.

PTR N,E

"N* indicates the pointer number for a particular location, and "E" is the
two digit HEXNUMBER representing the new data te be inserted at that
location.

e.g. PTR13,43C

“pTR 13" refers to the location which contains the data relating to the
length of input buffer (ie. number of characters allowed in one single line
of input). MNormally the length is 126 characters (maximum allowed] but the
data inserted above, changes the value to 60 characters.

Again care should be taken to avoid corruptien of data necessary for the
operation of the computer.

MACHINE-CODE PROGRAMS

Quite often machine-code programs appear in magazines and other
publications, for users to type into their own computers. The presentation
might consist of the code 1isting in hexadecimal giving the memory locations
and their corresponding bytes of data to be typed in. A section of one such
listing is shown below.

LOCATION DATA
0807 F5
0808 9
0809 D309
oBOB 78
0BOC CBF7
DBOE D309
0810 F1
D811 D308

ZB5

The presentation might consist of the assembly source code listing which
uses machine-code mnemonics similar to shown below.

LINE NUMBERS SOURCE CODE LISTING

1563 PUSH AF
1564 LD A,C
1565 ouT (H'09"),A
1566 LD A,B
1567 SET 6,A
1568 ouT (H'09'),A
1569 POP AF
1570 ouT (H'08'),A
1571 RET

This type of listing s the equivalent of the program language before
conversion to "machine-code”,

It 15 necessary to use an "assembler" to convert the source coding into
machine-code data. Assemblers are special programs written specifically for
this purpose and are similar in function to an interpreter when using BASIC.

The following is one method which can be used to copy a machine code program
from a 1isting into the computer.

't does not involve the use of an "assembler”. Memory locations and bytes
of data are typed in from a code listing similar to that in example '1°
above. The procedure is as follows:-

a) Set up the computer to work in MOS (Machine Operating System)

b) Type M immediately followed by the first memory location of the
11sting and then ENTER. This invokes the "modify" command under MOS which
then allows data to be entered into consecutive memory locations.

¢l The first memory location appears on the screen ready for the data to be
typed in as shown in the 1isting. As the bytes of data are entered the next
consecutive memary location automatically appears on the screen ready for
the corresponding data to be typed in.

d] At the end of the listing type a full stop (.) and key ENTER s0 as to
exit the sequence.

el To run the program type G followed by the first memory location of the
listing and then key ENTER. This instructs the computer to go to the
program starting at the address given, and execute.

IT the source-code Tisting only is given, as in the second example above,
then an assembler becomes necessary. Without the assembler the SOURCE-CODE
cannot be typed in. Assemblers available for EINSTEIN 256 are indicated
in the literature enclosed with the machine.

286

-

M | | rM il rt I'Fl FFl rEp rEFl I rr FIFFL FFT FWi ow W - £ el

ADDRESS /HEX DATA SOURCE CODE

CODE VALUE/S
8000 OGOA LD B,DAH
800z C5 AGATN: PUSH BC
8003 CF RST &
8004 BE DB OBEH
8005 060OC LD B,O0CH
8007 C5 LOOP : PUSH BC
8008 CF RST &
8009 A6 DE OAGBH
B00OA C1 POP BC
8008 10FA DHNZ LOOP
800D CF RST B
800E CF DB OCFH
BOOF 2ZAZAZAZA DB %%k This could
8023 2ZAZA2054
8017 68697320
8018 636F756C
801F &4
8020 20626520 DB " be your message”
8024 T96F7572
8028 206D6573
802C 73616765
8030 202AZAZA e
8034 ZAZAZA
8037 80 DB BOH
8038 C1 POP BC
8039 10C7 DJINZ AGAIN
8038 C30001 JP OT00H

END

NOTE: Start at 8000 tm MOS and type in the Hex code: the address will
automatically increment, so don't worry about going out of sequence.

287

TO SAVE MACHINE-CODE PROGRAMS

Machine Code programs should normally start at location &D100 in which case
they can be saved using DOS commands without having to load BASIC (saved as
.COM files in this instance).

If a machine code program starts at an address different from &0100 then it
should be a location above &5000 and end below location &EO000D. This 1is to
avoid any overwriting of BASIC and DOS which might cause corruption.
Programs within this catageory can be saved using commands in BASIC. [saved
as .0BJ files)

To save a program which begins at &0100:-

a) Determine the number of blocks of memory which the program occupies
using the following calculation with the computer working in BASIC.

(&XXXX - &0100)/256 = NUMBER OF BLOCKS

where xxxx is the end address of the program.

If necessary the answer given (Mo, of blocks) should be rounded up to
the next whole number.

b) Go into DOS (CTRL/BREAK or type DOS from BASIC)

¢)] Use the SAVE command in the following format.

SAVE N Name.COM

where M is the number of blocks, HName is the program title as selected
by the user, .COM is the file type for machine-code programs saved in this
manner .,

g.g9. SAVE 4 MAK.COM

This will save the program MAK, which occupies 4 BLOCKS, as a .COM file on
disc.

288

1 & 4

(3 & | PN iy [& B (3 4 | [} 4 | ime

| & 2

[N e 'y A

T I

BIBLIDGRAPHY

1. "Einstein User" magazine.
publisher: Tatung (UK) Ltd., Stafford Park 10,
Telford, Shropshire, TF3 3AB, England

2, "The Brain"
Publisher: Syntaxsoft, The Northbridge Centre,
Elm Street, Burnley, Lancashire, England.

3, "Einstein News"
Publisher: Screens Microcomputers, Main Avenue, Moor Park,
Northwood, Middlesex, England.

4. "Einstein Primer"
Publisher: Screensoft, Main Avenue, Moor Park, Northwood,
Middlesex, England.

5. "“Finstein Assembly Language Course"
Publisher: Glentop Publishers Ltd., Standfast House,
Bath Place, High Street, Barnet,
Hertfordshire ENS SXE, England.

6. "Relatively BASIC"
Publisher: Solo Software, 958 Blackpole Trading Estate West,
Worcester.

7. UK Einstein Users Group (UKEUG)
c/o Kelth Stokes, "Hilleroft", Codmore Hill,
Pulborough, West Sussex, RHZ 1BQ, England.

8. AVON Einstein User Group,
74, Great Hayles Road, Crowndale Estate, Witchurch,
BRISTOL, Avon, B514 DSJ [Membership Freel

9., Software Interest Group
¢/o P.D. Sig, 138 Holtye Road, East Grinstead, Sussex, RH19 3EA.

289

L S % S 4 ' ¥ ' Y G ¥

(L A Y

Ll

[0 A A

Mokl MMM

Al

M

GLOSSARY OF TERMS

Boot :
To start up a computer. Abbreviation for executing bootstrap program.

Bootstrap Program:

The part of DOS in ROM s a good example. It contains just enough
information to load the rest of the DOS into RAM. A program kept in memory
which uses certain preliminary instructions to load or read other programs
or data. '

Branch:
A part of a computer program where a choice is made between alternative

routes - the decision maker in computing.

Breakpoint:
A point in a computer program where normal execution is interrupted to
enable visual checking, allowing debugging, or to obtain print-outs.

Buffer:
An area of computer memory used for temporary storage of input or output
data until a particular device is ready for it.

Bug:

A defect or mistake in a computer program.

Bus:
A set of electrical pathways or connectors inside a computer.

e:
"By eight'. Usually means a group of eight bits.

CAD:
Stands for 'computer aided design’'.

CAL:
Stands for 'computer aided learning'.

CAM:
Stands for 'computer aided manufacture'.

Central processing unit: (CPU)

The ‘brain' of the computer where all parts of the computer system are
linked together and where the calculations and manipulation of data take
place, It usually contains the Arithmetic Logic Unit (ALU} and several other
stages once needing several chips.

Characters:
The expression used for numerals, letters & symbols which a computer can
print, or display on a screen.

Chip:
4 single device containing many transistors and other components formed on
the surface of a piece of siliceon.

291

COBOL: (Common Business Oriented Language)
A high level language usually used for business applications.

Command :
A direct instruction to the computer.

Compatible:
Two computers are said to be compatible if a program written on one will run
on the other without modification.

ler:

A program which converts like an applications program written in a high
level language inte the machine code version which the computer needs to be
able to run it without any interpretation.

Computer:

The computer is a device which can process information according to
instructions given to it, and in this way perform useful or entertaining
tasks.

Concatenation:
The linking of two or more "strings" to make a single longer “string”.

Constant:
An item of data used, but not altered by a program. The data can be either
a numeric constant or a string constant.

Converter analogue to digital (or vice-versa):

A device for converting anologue information in the form of a continuously
varying electrical voltage from some kind of electrical sensor into the
digital form which the computer can cope with - or vice-versa.

CP/M: (Control Program for Microcomputers)
This is an operating system most commonly used in microcomputers. All
micros which use a CP/M system can use the same software.

Crash:

A computer is said to ‘crash' when & program which is running cannot be
completed and cannot be restarted.

Cursor:

some way of marking the screen with the position at which the next character
typed in at the keyboard will appear. It takes several forms, from a
chevron, , to a flashing square block.

Cycle Time:

The time required by a computer to read from or write into the system
MEMmoTy . Cycle time is often used as a measure of computer performance,

since this is a measure of the time required to fetch an instruction.

Daisy wheel printer:

A printer which makes use of a plastic disc around the edge of which is a
set of print characters. The wheel rotates at speed until the required
character is brought before a hanmer which strikes it against a ribbon. One
wheel can easily be replaced with another having a different typeface.

292

i

1 .

1Y S Y Y .Y

| S Y S Y S U B 4 B N Y

|9 4y §

1

Al

Data:
Loosely, means 'information’ which a computer program can deal with. Data

can be in the form of numbers or characters.

Database:
An organised collection of files of information to which the computer has
access. 1f many people have access to it through different terminals it

might then be called a data bank.

De-bugging:
The business of testing a program and then changing it to get rid of 'bugs’

or faults.

Default:
& standard characteristic or value which the computer assumes if certain

specifications are omitted within a statement ar program.

Device:
A particular unit or processing equipment in a computer system external to
the Central Processing Unit and usually in the form of a peripheral .

Dialect:
& version of particular computer language e.g. ERBASIC, TATUNG/CRYSTAL BASIC,

BEC BASIC, RML BASIC - all are different dialects of BASIC with some things
i COMMON .

Digital:
To do with numbers, c.f. 'analogue’.

Digitizer:
& device which converts "continuous information" into the numbers a computer

can understand. (e.g. a graphics tablet}.

Directory:
An area of storage on a disc indicating the contents and their locations on

the dise (similar to contents 1isting in a boak).

Disc or 'floppy disc’:
A flat magnetic disc on which pregrams and data may be stored and retrieved
quickly - much faster than cassette tape.

Documentation:

) The collation of documents or the information recorded in documents.
5) A collection of documents or information on a particular subject.

Dot matrix printer:
4 printer using a series of electrically ‘hammered' moving pins to create
characters composed of a pattern of dots.

EPROM: (Erasable, Programmable Read-Only Memary)

A chip which can be fed with a program or data and which will hold it until
it 4s erased (usually by exposing the surface of the chip to ultravoilet
light). After that it can be re-programmed, (See PROM. ROM).

293

Execute:
To run a program or perform the task specified.

Exponent :
A number indicating the power to which a number or ‘expression’ is to be
raised,

Expression:
Representation of a mathematical or logical statement by symbols.

File:
An organised collection of information - e.q. computer programs.

Firmware:

A program permanently held in a 'read only memory' chip in a computer. The
term usually refers to the programs which manage the internal operations of
the computer rather than applications programs,

Flow chart:

A diagram on paper showing the sequence of events and choices which need to
be made in the solution of & problem - usually (though not exclusively)
relating to a computer program.

FORTRAN: (FORmula TRAMslation)
A high level language mainly for scientific and mathematical use.

Garbage:
Meaningless or unwanted data coming from the computer.

ics:

The overall term meaning the appearance of pictures or diagrams on the
screen as opposed to letters and numbers.

Handshaking:

A 'dialogue’ between two computers or a computer and a 'peripheral device' -
like a printer - which establishes that a message is passed between them to
their mutual satisfaction.

Hardware:
The physical bits and pieces of the computer - as opposed to the 'software’
ar the programs.

Hard copy:
Tangible and permanent output from a computer, on paper.

Hexadecimal or "HEX":
A method of counting in a base of 16. Used for programming in low leyel
languages. One 'byte' can be represented by two hexadecimal symbols.

High level language:

A programming language where the programmer uses instructions which are
close to his ordinary familiar language rather than machine code, In
effect, the higher the 'level' of the language the nearer it is to ordinary
language and the easier it is for the uninitiated to understand,

294

T "Il ‘1 e Y

ri

r Fr rr '"r’t O '’LO'"FLO'FLO'FL "KL' T 'TLEOTE O

"FI

Housekeeping:

Refers to instructions, wusually at the beginning of a program which help to
prganise the tasks involved but do not contribute directly to the solution
of a prablem (e.g. clearing fields to zero).

Inteqer:

A number which does not contain a fractional part.

Integrated circuit (IC):
The circuits combined together on the surface of a silicon chip.

Interactive:

A way of operating where the user is in direct and continual two way
cormunication with the computer, maybe answering its questions and receiving
its reactions tc the answer.

Input :
The route whereby information gets into the computer or the putting in of
information by the operator (e.g. from a keyboard).

Instructions:
A computer program consists of a series of dinstructions, often used
interchangably with 'commands'.

Interface:

The boundary between two parts of a computer system. Often the boundary
consists of a piece of electronic circuitry. Also means to make ane part of
a computer system run smoothly with another,

Interpreter
A program which translates the keywords in a high level language program,
line by line, into machine code which the processor can cope with.

Iteration:
Refers to the technique of repeating a group of program statements and is
one repetition of such a group (ie. one pass of a Toop).

Keyboard:

One form of 1input device for a computer. Keyboards are wusually
"Alphanumeric' (g.v.) but also contain special keys which perform particular
functions on the computer.

Keywords :
Words in the wvocabulary of a high level language which have a special
meaning to the computer,

Kilobyte:
Approximately a thousand bytes (actually it is 2 to the power of 10, which
fs 1024} e.q. 64k memory is 64 thousand bytes of memaory.

Language :

A computer 'language' is an organised way of communicating with a computer
using precisely defined dinstructions in the form of 'English 1like'
ctatements.

LED: (Light Emitting Diode)
An electronic component which emits 1ight when excited by an electric
current. a5,

Listing:
A Tist of items (program instructions, data, etc,) printed on a peripheral
device by the computer. Usually refers to the '‘Tisting' of a program.

Load:
To enter programs or data into storage or working registers,

Location:

A place in the computer's memory where information is to be stored (see
address).

Loop:
A group of consecutive program lines which are repeatedly performed, usually
a specified number of times.

Low level language:
(See machine code)

Machine code:

The pattern of '0Os' and '1s' which the computer actually understands. It is
the lowest level of language for a programmer to work in and all high Tevel
programs are converted into machine code instructions automatically when
they run. Programs written directly in a low level language run faster than
thase in high Tevel language.

Memory:

A computer's memory is a device or series of devices capable of storing

information temporarily or permanently 1in the form of patterns of binary

‘Is' and '0s'. The computer then 'reads' information from the memary or in

some cases also 'writes' information into it when it operates.

1. Internal Memory - ROM and RAM,

2. External Memory - Magnetic tape or disc on which binary information is
stored and 'retreived' by the computer as required. The information is
not lost when the computer is switched off.

Menu-driven programs:

Programs which present the operator with a 1ist of choices at any particular
time and these are displayed on the screen for him to choose from. Each
choice leads down a different branch of the program.

Micro:
Has two meanings - (i) ‘'small' - as in microcomputer' - and (11) a millionth
of something - e.g. microsecond, a millionth of a second,

Microcomputer:
A small computer system built round a microprocessor but having all the

necessary bits and pieces (peripherals and memory) to link with the outside
world and store information.

Microelectronics:

The use of electrical devices in which many different components are formed
together {integrated) into microscopically small circuits on the surface of
single 'chips' (usually of silicon).

Microprocessor:
A microprocessor is the central chip cantaining the control unit for the
computer, 296

(Y T

Minicomputer:

A medium sized computer of the kind which might be used by a medium sized
company to keep its records, work out its payroll, stock control, etc.,
Midway between a 'micro' and a ‘mainframe’ computer.

MO5: [Machine Operating System.)
That system which controls the internal function of the computer.

MP/M: (Multi-user CP/M)
An operating system like a CP/M except that wmany people can use it
simultaneously.

Multi-user:
A computer system where a group of terminals are connected to a single
microcomputer so several people can use the micro simultanecusly.

Network:

A system where a number of computers, terminals and other components (1ike
printers and disc drives) can be linked together electronically - sometimes
over some distance.

Humeric:
Ta do with numbers.

Operand :
The data upon which a machine-code instruction operates.

Operating System:

The software program residing permanently dinside the computer which
supervises the running of applications programs and controls the operations
of the various input and output devices like the video display wunit,
keyboard etc.

Operator:
This is a symbol used within program instructions to indicate numeric or
relational comparisons. There are sets of numeric and relational operators.

Dﬁtput:
Information which a computer sends out to a screen or a printer or to &
backing memory store.

Paddle:
Another name for a joystick control - e.g. for a T.V. game.

Parallel: _
When electrical patterns of all 8 bits in a byte travel simultanecusly along
separate wires they are said to be in 'parallel’.

Pascal:
A high level language preferred by many to BASIC for general programming
work.

PCB (printed circuit board):

The plastic board into which the computer's various electronic components
are soldered. These are linked by thin inter-connecting wires printed on
its surface.

237

Peripherals:

Bits and pieces of a computer system which connect in different Ways with
the central processor and memery and which form dits input and output
devices. Peripherals include printers, disc drives, joy sticks, graphics
tables, 1ight pens etc.

Pixels:
The smallest dot on a screen which the computer can display.

Port:
A place where electrical connection can be made with the central processor
in the computer,

Portability:

Programs are portable if they run on different computer systems,
Processor:

(See central processing unit)

Program:

A series of instructions which the computer carries out in sequence,

PROM (Programmable Read Only HMemory) :
A chip which can be programmed by the user, Once programmed, <its contents
are "non-volatile', (See alsg ROM, EPROM).

RAM (Random Access Memory):

Memory into which Tnformation can be put (written) and from which it can
instantly be copied (read) no matter where it is in the memory, RAM is the
‘working memory' of the computer into which applications programs can be
Toaded from outside and then run, Sometimes called a read/write memory.

Real time: .
A computer system is operating in ‘real time' .if the processing of
information fed in takes place instantly.

Reserved words:

A special word with a predefined meaning, wused in a programming language.
Reserved words must be spelled correctly, appear in the proper arder in a
statement or command, and cannot be ysed as & 'variable' name,

ROM (Eead Only Memory):

A memory circuit in which the information stored is 'built into' the chip
when it is made and which cannot subsequently be changed by the user,
Information can be copied from ROM but it cannot be written there, hence the
name read only memory. Another name for read only memory is 'firmware' since
this implies software which is permanent or firmly in place, on the chip.

Robot :
A computer-controlled device which is fitted with sensors and activating
mechanisms. The sensors receive information about the surrounding

environment, send it to a computer which then decides on the basis of its
program how the mechanical parts should respond - e.g. to pick something up
or to move about. Some robots can be programmed tq improve their
performance as a result of their experience, (see artificial intelligence).

298

Scanning:
This word usually refers to the very rapid examination of every item in a
computer's 'list' of data to see if some condition is met.

Scrolling:

The automatic upward movement of the information on a screen to allow new
information to be displayed at the bottom of the screen. Sideways scrolling
iz often used in graphics to scan a particular scene.

Serial:

When electrical patterns of bits travel one after the other down a wire in a
computer they are said to be a 'serial' bit stream - as opposed to a
'‘parallel’ bit stream (g.v.)

Silicon:

The chemical element which is used as the basis for the increasingly more
complex integrated electronic circuits which have been responsible for the
'‘microelectronics revolution'., Silicen is present in sand (which is silicon
dioxide]. It has odd electrical properties, sometimes conducting
electricity and sometimes not, depending, for example, on what other
sybstances are mixed with it in minute guantities.

Software:

The general term which refers to all computer programs which can be run on
computer hardware, A distinction can be made between the programs
responsible for the running of the computer - its internal "housekeeping'
and operating systems and so on - and ‘applications programs'. Ultimately,
all software consists of patterns of binary information which give the
computer instructions.

Statement :
A numbered line of a computer program.

Storage:
tnother word for memory - a place where information can be kept in a form
which is accessible to the computer.

String:

L set of characters aone after the other which the computer can deal with,
usually enclosed by quote marks and a distinction s usually made between
strings and numbers. Spaces contained within a string count as characters.

Subroutine:

A self-contained part of a program that can be called up and run by other
parts of the program. It is usually written to perform a task that is needed
frequently by the main program.

Syntax:

The structure or 'grammar' of program statements and commands.

Systems amalyst:

A person trained in the analysis of. complex physical or organisational
problems and able to offer solutions calling on a range of skills, one of
which may involve the use of the computer and computer programming.

299

Tape:

Magnetic tape or punched paper tape can both be used to store computer
programs or data. Neither is as fast as disc systems when it comes to
finding the information stored.

Telesoftware:

Computer programs sent by telephone line or by television as part of the
teletext signal, With a suitable decoder the computer program can be

entered directly inte the memory of a computer and then 'run'.

Terminal:
A peripheral device usually consisting of a keyboard and a screen which can
link into a computer network sometimes using a telephone as the link.

Time-sharing: ,

A way of sharing out powerful computer facilites between a number of users
who want those facilities apparently at the same time on a number of
separate terminals. Each user gets the impression that he has sole use of
the computer.

Unary Operation:
The processing operation carried out on one operand {eg. negation)

User:
The individual person using a machine.

Variable:
An electronic 'box' or pigeon hole into which data can be put and
subsequently be changed. A variable has a name and a value. The name does
not change but the value can. Variables can also be 'numeric' or 'string'
variables.

YOU (Visual Display Unit):

A television-like screen on which the output of the computer can be
displayed. The ¥DU is the most usual ‘output peripheral device' of the
computer,

Yoice recognition:

The ability of a computer to match the pattern of signals coming into it
from a microphone with stored 'templates' held in its electronic memory and
thus recognise words. . .

Yoice synthesis:
The ability of the computer to use stored patterns of sounds within 1ts
memory to assemble words which can be played through a loudspeaker.

Yolatile memory:
Memory in which information is lost when the power is switched off.

Wand :
A pen-like device able to read optically coded labels (see bar codes).

Winchester disc:

A form of back-up storage for a computer, It consists of & rigid magnetic
disc in a sealed container scanned by a head which does mot guite touch the
disc, therefore not wearing it out,

300

T O TrF OF'F M 'FEO'PTYTO O'’F’TOOIFTPRFPTOO MY O’'FOTEREE O OFPTLO O T O PTYTYTOFPFTOLDDOOT™TPFTYFOIPTETDO O OITPTREEOTPTRTYOOFPTY

i

Word:

When a computer operates it deals with groups of bits at a time. The
minimum number of bits which the central processor handles at any one moment
is called a 'word'.

Word processing:

An office procedure for electronically storing, editing and manipulating
text using an electronic keyboard, computer and printer. The text 1is
recorded on a magnetic medium rather than on paper, except for the final
'print-out’.

Write protect:

To physically prevent write cycles from accessing a particular device or
memory location as a safeguard against accidental overwriting of data.

301

APPENDICES

Error Messages in EBASIC.

Code Table/Graphics Set and ASCII Codes
Control Codes

Default Colour Palette

Peripherals

Decimal /Binary/Hexadecimal Conversion
ROM routines (MCAL's)

Disc format

Interfacing Transient Programs and DOS Modules
1/0 Ports

Memory Maps/Scratch Pad Locations
Sample File Handling Programs

BASIC Reserved Words

Hardware

ERROR MESSACES TN EBASIC

Error Messages

Ereak
MNext

Syntax
Return

Data

Oty

0wt

Mem Full
Eranch
Range
Dimensqon
Divisian
Stack Full
Type

Cmd

Str Qyfl
Str Complex
Cont

Fn Defn
Operand

Bad data
End of Text
File

Drive Select
File Type

Mo File
File Exists
File Locked
Disc Locked
Disc Seek

Disc Full
Dir Full

Number specified outside allowable range

Attempt to refer to non-existent line
Outside dimensions specified for array
OIM encountered for already dimensioned array

FOR, GOSUB or expressions
number expected or vice versa
defined in system

too long

too complex - Split it up!

Cannot continue after errar or program mod.
FN user function not defined by a previous DEF

Orive selected not available in system

APPENDIX A
CODE

HEX DECIMAL

0o 0 Interruption from Keyboard!

o1 1 MNEXT statement found without
corresponding FOR

0z 2 Typing error in Tine

03 3 RETURN or POP found without
corresponding GOSUB

04 4 No more DATA statements for
READ

05 b

0& 6 MNumber too large

07 7 No more memory left

08 8

09 9

OA 10

0B 11 Mivide by Zero!

0C 12 HNo more stack for

00 13 String given when

OE 14 Reserved Word not

OF 15 String expression

10 16 String expression

11 17

12 18

13 19 Operand expected in expression

14 ¢0 Disc checksum error

15 21 End of File encountered

16 22 FDESC nnt defined {(or used by
another file)

17 23

18 24 File of incorrect type

19 25 File not found

1A 26 File already present

18 27 File has been locked

1C 28 Disc is in 'Read Only' mode

10 29 Attempt to seek beyond end of
disc

1E 30 Mo space for file contents

1F 31 Too many files in Directory

i1

T TrF OFFE MY P°TFOOTEY OO TPY M PTOOOTTTOFTL T PP PR OFWI IR OIFT IR O OTRR O TWW

T

wt kb kDR RE kD &I &I RS

11

& B0 BT BE O RRE RD O RD O RL RDT A1

L

When an error occurs, either in direct mode or from within a program,
execution halts and a message will be output. Unless error trap statements
are used [as described in the previous section] the message will appear in
the following format:-

For direct mode - "Description of Error® Error
For deferred mode - "Description of Error® Error in
“Line No."

The "Description of Error" is a statement which indicates the type of error
which has been made. The "Line No." in deferred mode is the program line
number in which the error occurred.

Examples:
Direct Mode = Branch Error
Deferred Mode - Branch Error in 75

Details of the various error messages which might be output are given below.

Bad Data
A checksum error has been detected while loading or verifying a
program/data file from disc. 1i.e. disc has been corrupted or memory
contents do not match file (in the case of verify).

ACTION:- Retry with backup disc!

‘Branch

Reference has been made to a non-existent line number i.e. an attempt
to use a 1ine which is not included in a program.

ACTIDON:- Check program listing and make the necessary corrections in
relation to the particular 1ine/line number.

Cmd (Cosmand)
fn attempt has been m.de to reference a reserved word which does not
exist, This often happens when programs are adapted from other
systems.

ACTION:- Trace the offending word and convert or re-structure to
comply with current system.

Cont (Continue)
An attempt has been made to continue a program, (using the CONT
command after a specified interrupt] when either:-
a) an error occurred or
b) alterations have been made within the program.

ACTION:- Check for errors which may have been introducted in any
modifications and rectify as necessary.

Data
A READ statement has been used but dinsufficient data has been

presented in the corresponding DATA statement.

ACTION:- Check the corresponding DATA statement and rectify as
necessary.

Dimension _
An attempt has been made to redimension an array. Arrays may only be
dimensioned once within a program, {including those arrays of under 10
elements which have not been formally dimensioned.

ACTION:- Check the appropriate statements, processes, and
corresponding logic sequences. Rectify as necessary.

Division
An attempt has been made to divide a number by zero.

ACTION:- Check the appropriate expression and rectify as necessary,

Drive Select
A disc drive has been selected which is not available on the system.

ACTION: -
i) Check the appropriate select statement and rectify as necessary,
77} Check that the particular drive is included in the system,

End of Text
Either:-
a) An end-of=-file marker has been encountered in a data file or
b} The last block of a file has been read,

This error may be controlled within the system by use of the ON EOF

command.
File _
Either:-
al An attempt has been made to open a file which is already open or
b} An attempt has been made to read from, or write to, a file which is
not open,
ACTION:- Check the logical sequence of the operations involved and
rectify as necesaary.
File Type

A particular file type has been specified when in fact another type
was expected,

ACTION:- Check the appropriate file types and rectify as necessary
for them to correspond as required,

Fn Defn (Function Definition)
Either:=
a} A user-defined function has been used without first defining it or
b} CALL has been used as a function without first setting up the
USRLOC,

ACTIDN:-
i) Check definition of appropriate user defined functians ar
11) Check that USRLOC has been correctly set up. Rectify as necessary,

Mem Full
An attempt has been made to use a command which would need more MEMmO Ty
than is available.

ACTION:- Either re-structure or eliminate the command so as to comply
with current memory space available.

MNext
B WEXT has been used which does not correspond to a FOR statement.

ACTION:- Check the loop structure and either:-

a) eliminate the NEXT or
b) insert the required FOR statement

Operand
Operand is missing after an operator.

Example: PRINT 6.2%7+
ACTION: Check the expression and rectify as necessary.

Ovf1 (Overflow)
Numeric overflow from a calculation, i.e. number is outside the normal
range for numeric varfables,

ACTION:- Check the appropriate expressions and rectify as necessary.

Qty (Quantity)
A particular parameter in an array, command, or function, falls
outside the declared range.

ACTION:=

i) Check parameter values with the individual commands and functions
concerned to determine the maximum and minimum values allowed.

i1) Rectify values or re-structure as necessary.

An attempt has been made to access an element of an array which does
not fall within the 1imits of the delcared dimensions.

ACTION:- Check the dimensions of the array and rectify to accommodate
the particular element as required.

Return
A RETURN has been used without a corresponding GOSUB.

ACTION:- Check the logical sequence of the processes involved and
either:-

i) re-structure the sequence or

ii) insert a GOSUB.

depending on the particular requirements.

Stack Full

This will make reference to one or more of the following situations:-

a) FOR loops
b) GOSUBs

c) Parentheses in Expressions
d) FILL

The error message will be displayed if any of the above conditions
have been NESTED too deeply, causing a "stack overflow".

ACTION:- Re=-structure so as to reduce the nesting to an acceptable
level and thereby rectify the situation, In the case of FILL check
that the area in question is fully enclosed,

Str Ovfl (String Overflow)

A string has been included which exceeds the maximum number of
characters allowed (255).

ACTION:- Check the offending string and either:-
i) re-structure the string, reducing the number of characters or

i1) transpose the single string into two or more separate strings with
less then 255 characters per string.

Str Complex (String Complex)

A string expression has been used which is too long or complex.

ACTION:- Break the expression into smaller sections,

Syntax

Type

This 1indicates that either a typing error has been made or a
particular statement has been constructed incorrectly.

-AETIGN:- Check the appropriate sections of data and carry out the

following:-
i) correct typing errors,
11) correct statement construction errors.

An incorrect data type has been used. i.e. a "numeric" quantity has
been used when a "string® type was expected, or vice versa.

Dir Full (Directory Full)

This indicates the directory section of a disc is full.

ACTION:- I further information is to be placed in the directory then

it must be at the expense of some of the existing data (either by
deletion or overwriting).

Vi

TTT T T T T TIL T

Tl

T Ml

T T1

T TC C Tt TL Tt T m m

dd

Disc Full
This indicates that there is no more space available on a particular
disc.

ACTION:- Further information can only be placed on the disc at the
expense of existing data (either by deletion or overwriting}.

Disc Locked
An attempt has been made to write to a disc which does not match the
map of the disc held in the computer memory.

Example: This error usually occurs when a disc is changed and an
attempt is made to save a file on this disc.

ACTIOM:- Execute a DRIVE n before using a SAVE command, where n 1s
the drive number containing the new disc.

Disc Seek
An attempt has been made to access a particular sector which 1s not on
the disc. This guite often happens with "random-access" files when
the record required is off the disc.

ACTION:- Check the appropriate data and rectify as necessary.

File Exists
An attempt has been made to use a name for a file which is already in
existance {usually with the REN statement].

ACTION:- Check file names and rectify as necessary.

File Locked
An attempt has been made tu erase, or write to, a file which has been
"locked".

ACTION:- Check that the correct file has been referenced and rectify
as necessary.

No File
A particular file canmot be found in a directory.

ACTION:-

i) Check that the file name has been constructed correctly and rectify
as necessary.

ii) Check documentation to determine whether or not the file has been
deleted previously.

Shape Defn (Shape Definition)
The number of {hexadecimal) characters entered in the shape definition
string are not a multiple of 2. Two characters must be entered for
gach row of the shape being formed.

ACTIOMN: - Edit SHAPE string by adding zero's or removing any eitra
characters to give 2 characters for each row of the shape.

¥id

Key Defn (Programmable Fumction Key Definition)
A function key string has been declared beyond its legal length.

ACTION:- Redefine the key concerned with a shorter string,

Write Protect
An attempt has been made to write to a disc which is "write protected”
(on a "read only disc").

ACTION:= Check that the correct disc has been used and rectify as
necessary, or de-activate the write protect tabs on the disc cassette.

viii

i rr ™ ™™ ! ''‘fr 't TtOMmI O mTrTOOTCOFPTL MDD OFTLOMTT PTL MDD 'TT ITYL TR Ml

™

APPENDIX B

CODE TABLE - EINSTEIN (IS0 646) CHARACTER SET

mdhard M (1 N EIEE SN W N AN EFEEPE P =
-7 Clw Z |\l NI L4 || (T L AT B B | (A O
S B =l m=E T EE RN EEE
._...n.__1m1n_ EOUDMO W E|= | A & B D[]
—o" P IMO R =S| M EE| O R
=10 talal s e al 1 .| of
-0 | 9%_,% o fala | fa| 4] 7
— D“nmu._ﬂ_ -.-.“_man_. i E e P O n.“.ﬂww.r £ ao
D..I+1"..I1J a ol-olels = 3 ®| > N 2 =) m
MHMHﬁﬂEEnhndnfﬂuw.ll_klmnn
D.......HD,15P0HSTuu._w_x?z_fum__.... _
o~ OO« <mloaw|w o/x|= |~ xa|=z|0
00T TN O T |NMTW®O N~V]A]C
0/0 [T Ofou[~ |« [l las - |—[~[% 1] IS
CIEE W A R
o o Bt 5 5 el L e B 5 | 8
| o | =] =5 | =
_ _ & 2 Z e E 12| 2o ER8 24
| 19| | E x| x| 5GBS, |3 |3, 0%y, 8 2
o | o|3|: |B|E|: |22 mmmmmmmmmmmm
© | | E sl EE| |5 |E |G| pRETEE
T&,ﬂ_i....,.._....__"...q_.E...._u”....n_u..u“:.ﬂ_.”.E*..-...n.EF
h1ﬂ1ﬂ1ﬂdﬂ__1ﬂ..1ﬂq1ﬂ1ﬂ1
ht_ua.ﬂH.1ﬂnﬂ11un1“1‘ﬂ_ﬂ_11
haunﬂ_n._l_._lululu_ﬂ__ﬂ_.ﬂ_.-l.._l.-l._l
2 |C|O00000 0| r rrrrr—

CODE TABLE - ASCII CHARACTER SET

=i

....111FE_EEDF_QD.._H_HEEEEH.II
H11ﬂ_EEUﬂ_EEQﬂEEDEEEH_EW
et) Bl = ==l = 8 <]) s ST N RIS
11DU_EE_H_DDDJ_H_E_HEEEE_M_QE
it~ il 2] (53] 1] [B} o} i)]) S| S A R R S e
e L BOODmOeE B R EERIO R
U_-I_. = | = .-
-0 Q%Gupurrﬂfnn & .,_..i.zc ¢
mu [} = o |
-0 - = f ﬂbLﬂhTﬂ.....l.FF_ﬂ. 4.uua
_ﬂ_11..1_.ln.u.rntuvwxu:z{f}~l
O T CR|Re|alo/vle|~ o= =x_[E[c|o]
01015PDH3TUFWIFI_[H]+_
m”m.n.d.@ABCDEFEHIJILMHD
00| |TINOr Nmww/o/~oo -~ VITAle
0|0 " CN |G |~ Ix [4|62[®]o8|~ [~ %[+ ~| 1 <]~
™~ v |88 i 8
o HEBRHHE R IO AN
™|ai . [EH|E |G Ec.ﬂ.r_m L7
2 2 u.m. = 9 =5
g mmmmmmmmmwmmmmns e
L@ 8| l3gl 16 12 |gl; Blal. |88
= a| ¥ x|x|2|olis u*mmmmmu%mmm
Q285 H.mmmm.:mmf:m..
S il e B
$D123456?39A500Ef
h.._ﬂ._..l.ﬂ._lu._lu..lu._lﬂ._ln._l_u..l
h..nnuql._lu_nu._lalnﬂ._l._.lnﬂ._lql
h.ﬂ.ﬂﬂu1111ﬂ_uuu._l._l11
o |O000D/C|0o|r|rr|rrlrr|r—

CODE TABLE - GERMAN CHARACTER SET

et

e UEEFEEEREFEEEED
a1 (1 7] = [) (=) s [] = e sl]
RN E EE R EEREEFENEER
mEEEE =R EEAREERREE
b 1= i i (<11 [0][o e = 2) e)) o]
1DWGA-DQ;HHmEmmEmEDHE
10 1_ghuﬂu...ﬂ|._.nun.llﬂvF_HLD$ D_Hm.h_ulﬂlﬂ_ &
ol o] 121 | [o] [el [=[=lolrl=]e
ol ["[T|~[ale[=[e][=[3 >3] x »/n|[n|oc|=]=|n
H_U;I..Iﬂ..ﬁ..nhcdef-g._.n:_i_l.klmnn
ol=Clrwlalo|zlo|-|a>zx>Nn[<lo[=]¢]]
M1DH4HABcDEFGH|JKLMNn
olo|" |79 |Nm ¢~ e - V]I A
ﬂﬂ..l.ﬂ_n:ﬂ!u e IS IR R R AE S B
|.ID1 MMmm".mummg.. ._m.mm
= 5|3 |kd HnmmL..ﬁ_c.ﬁ mm
of | [Tl 8] E|8|8 50t 5 |B 2|0 26 5|8
[=) ¥ 8315 5| &[5 |58lds|® | ¢ =\ 8
IR SEL 2 z
o Dm_mﬂﬁ.mmmm,m mmemmm
2 al B |2 (2= ¢ |EC|Eal 35 (% O=
ﬂﬂ HmEEmEmm MmuvcmmmmmMm
: DTEEd.E.E..?EQAEC.D_EF
h1_ﬂ1ﬂ1_u._l._ﬂ_._lnu._lu1ﬁ_,1u1
ol|o000r 00~ O+
Pel=1l=ll=1=1 Jt L =Y === L At b
20000000 O r|r|r|r|r|r| v
B R R 1! TR il B & W % 1 i W —— —

®i

CODE TABLE - SPANISH CHARACTER SET

Ll bt i N L LU 15) [) [N Rl P A Pl il
Lliad bl 1 711 N)) S S (S ORI R il
St C Bl E P N R ER NGRS
11BPCGHQGDEUDEEEHEEQE
1ﬂ1TBEDDHEUDﬂ_m_ﬂEEEHEE
1D1WA-UQQEDHEEBEEHDEE
q._l_nuuﬂnPrLs" ol VR PR h|.
—o | S 5] ol b, 8 L= a |=| *m
1000;5 Sﬁ_ & ﬂthhTur.ﬂFFﬂR._—ﬂﬂE
ﬂ_111?n.u.r.ntuvwxu..z{~n}.~]
h11ﬂﬁ;ah¢dnf9hllklmnu
ﬂ1ﬂ15PuHETuvwx?ziﬁ@f_
WWDﬁd@ABEDEFGHIJKLHHD
00 ™| ™M O™ < o/~ olo] < [~V A~
Mb102#ﬂ,#$%&‘{ﬁﬁ+,*.f
of [_[eh 5|55 e2E 08] A
vledl g =g l=(mafBE 2 (B3 | 0|0 -
o | [Tl 8|]3]1]5Es 2 @ed ;e
o E = 8
o mexmnmm mummumm_mummmm
ol | [°[E] 855 5 s [: i Ea
ﬁn123456?B§ABcDEF
h..ﬂ1ﬂ101ﬂ1ﬂ1.ﬂ1ﬂ1ﬂ1
210|0/+ +|Olo[~ oo/~ oo~ =
EUDUDT111DDDUTT11
h.ﬂ_ﬂﬂ_ﬂﬂﬂ_ﬂ_ﬂ111111_1_1

xii

KEYTOP
CHANGES
WITH
ALTERNATIVE CHARACTER
SETS

=
e

R
Ve e

=
i

4
Ex %-::3 BEiul ﬁiﬁ

B
=

s
EE

o
S

o
e

i

B
'&%ig%ﬁﬁ'&

APPENDIX C
CONTROL CODES

The control key, when operated in conjunction with other character keys,
pravides the following facilities which assist output to the screen whilst
working in MOS. A1l the numbers quoted below in brackets are in hexadecimal
notation,

2e

10.

CTRL-J (0DA) Line Feed [LF);

This will create a "1ine feed" (move to the next line down). In other
words the cursor moves down one 1ine and there is a "repeat" function if
the keys are held down.

When the bottom of the screen is reached, the display will "scroll up®
one line at a time. Again the "repeat™ function will operate if the
keys are held down.

CTRL-L (OC) Cursor Home and Clear Screen.
This will "clear” the screen and move the cursor to the "home" position
(top Teft hand corner of the screen).

CTRL-M (0D} Carriage Return (ENTER)
This will generate a "carriage return" with a line feed (i.e. move the
cursor to the beginning of the next line).

CTRL-A (01) Screen Dump to Printer.
Will cause a transfer of the screen display contents to a printer (i.e.
make a hard copy on paper)

CTRL-H (08} Backspace (BS).
This will simply move the cursor to the left, one character space at a
time. The function will "repeat" if the keys are held down.

CTRL-D (09) Horizontal Tabulation. (HT).
This will move the cursor to the right one character space at a time.
The function will repeat if the keys are held down.

CTRL-G {07} Bell.

This will invoke the "Beep" sound (i.e. cause a B880Hz tone to be
sounded)

CTRL-K (0B) Vertical Tabulation. (VT).
This will move the cursor UP one line at a time and there is a "repeat”
function if the keys are held down.

CTRL-T (14) Cursor OFF,
This will turn the cursor off, should this be required.

CTRL-Q (11} Cursor ON.

This will turn the cursor back on again as a reversal of the CTRL-T
function.

xiv

T T I I OTL T O T O TO0C mo o oY mrr 'Y /ey T e IfF OThT TR

't

e

T1

11.

12.

13.

14.

15.

16.

7.

18.

19.

2.

21

&

23.

CTRL-R (12) Printer ON.

This enables the printer such that any data output te the screen will
also be output to the printer. (The data normally coming from the
keyboard, or, from the display of text files by use of the DISP command
within the Disc Operating System).

CTRL-S (13) Printer OFF.
This simply turns the printer off as a direct reversal of the operation
in CTRL-R.

CTRL-% (1E) Cursor Home.
This returns the cursor to the "home" position (top left hand corner of
the screen) without affecting the screen contents.(escapel.

CTRL-X (18) Erase Whole Line.
This returns the cursor to the beginning of a line and then erases to
the end of the line.

CTRL-U (15) Erase to End of Line.
Thiz will erase to the end of a line from the current cursor position.

CTRL-Y (16) Erase to End of 5Screen.
This will erase to the end of the screen from the current cursor
position.

CTRL-Y or DEL (19) Delete Character.
This deletes a character to the left of the cursor, moving the remainder
of the line one character space to the left.

CTRL-F or CTRL-DEL (06) Delete Character at Cursor.
fither of these combinations will delete a character at the cursor,
moving the remainder of the 1ine cne character space to the Jeft.

CTRL-N (OE)
This clears the screen and sets 40 column display.

CTRL-0 (OF)
This clears the screen and sets 32 column display.

CTRL-P (10}
This clears the screen and sets the optional 80 column card display.

CTRL-Z or INS (1A)
This will insert a character space at the cursor position, at the same
time moving the existing text one space to the right of that positiaon.

CTRL — (10} Cursor Addressing Mode.

This sets up the cursor address. The syntax is &1D,X,Y where X and ¥
are the location on the screen. Y is in the value 0-23. the X value
depends upon the display mode selected.

Ly

DEFAULT COLOUR PALETTE

[P W R T TR R B

APPENDIX D

Transparent
Black
Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan

Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta
Grey

White

FATR]

FFF1 MY "M Y e Yoy

T

Y Y rF O OFr. 0

P g i i iIFi = 1™ nr

LE k.

L9 13 11] L 1 3 L L8 L]

!Eggndix E
PERIPHERALS

The following models are suitable for use as peripherals with the MICRO-
EINSTEIN.

PRINTERS:

1. TATUNG TP100
2. EPSON FX80 - The TATUNG character set can be programmed into this

mode]

The following printers can also be used with EINSTEIN 256 but do not
necessarily conform to the full TATUNG character set. Some alpha-numeric
characters/symbols will be different and the graphics characters will not
exist on these models.

1. EPSON LX80

2. FACIT 4510

3. SHINWA CTICPBEOD
Einstein 256 can support serial printers. The default setting is for
parallel printers. This can be changed by altering the settings of the DIP
switches inside Einstein 256. See Appendix P.
DISC DRIVES:

National Panasonic EME 150C

JOY STICKS:
Model Type Manufacturer
"Sure shot" Digital Cookridge Computer Supplies

xvil

APPENDIX F
DECIMAL /BINARY /HEXADECIMAL CONVERSION
DEC BIMARY HEX DEC BINARY HEX DEC BIMNARY HEX DEC BINARY HEX
O OOBO0000 i} B4 D1000000 240 | 428 10000000 BD | 492 11000000 0D
1 OOEIO0A 1 B% 000000 Eal 129 10000007 a1 193 MOooDdn €1
s i 2 oS 01000040 42 | 430 10000010 A2 | 194 11000070 2
3 ODDDDOAA 3 67 010071 43 137 1600011 (b] 195 11000019 C3
4 D000 & G 0100000 A4 132 10000100 Ba 196 19000900 2 C4
5 D0DDDDT =1 B3 0100001 45 133 1000010 a5 187 11000107 C§
¢ ODDOD10 & 7O 010007910 45 | 134 000110 BG | 198 11000110 08
7 00000111 T ™ 01000491 47 | 435 0000141 BT | 498 11000911 LT
8 DODOAOO0 8 T2 01007000 48 | 1356 10004000 BE | P00 11001000 OB
@ DDO001 g T3 0100 a9 13T 1001007 A 207 vrooi1ein C6
1 D00 L] T4 01004010 4A | 138 0001070 AA | 202 11001090 Ga
11 0oBdiodd B ™ 01001091 48 | 139 0004041 BE | 203 1001011 OB
12 DOAA0D C T8 000100 4 140 10001104 BC 204 11009100 oo
13 DDDOA0Y o 7T 000101 ab 141 103001109 BD 20% 140041904 oD
14 G110 E ™\ D110 4E 142 10001110 BE 206 11007110 CE
15 111 F T8 DI00A191 4F 143 10001111 BF 207 1oo11m1 OF
168 GO0000 10 30 DA 000D 50 144 10010000 G 208 11010000 DO
A7 000001 11 B1 D10M0001 51 | 145 10010004 pi | 200 10900041 O
18 DDAG0D 12 82 00010 B2 146 100100490 - 210 11010040 o2
19 DOOA0O11 13 B3 01010011 B3 | 947 40090041 93 | 241 41010041 03
20 DOOI0100 14 84 0010900 54 | 148 90070700 B4 | 212 91090400 D&
21 001010 15 BS 0101 55 148 1007107101 @5 213 11001 DS
22 0010110 18 BE 01070910 B8 | 180 10010440 96 | 214 41010410 D&
23 00010111 7 BY 010111 57 181 100710111 a7 21% 11090441 OF
24 00011000 18 BE 00110400 1 182 10019000] 218 11014000 DA
25 00011007 18 B3 091011007 8% | 1m3 40011004 9@ | 247 44041001 0a
26 00011040 dA B0 070171010 Ba | 184 4DD14090 9A | 218 41041010 DA
27 00011091 18 1 0011911 1 185 100711011 £] 219 11091011 DA
28 DoO11100 ic BZ 001100 T 158 10011100 ac 220 11091100 DG
26 0oo1Mo Ll 22 D11 ah 157 110 el | 221 1011101 DD
30 00011110 1E %4 DI011490 2 SBE | AW 10044490 9E | 222 11041410 DE
1 o011 1F /5 0o =1 158 1011111 aF 223 11071111 OF
32 o0i0D00n 20 W8 01100000 260 | 460 10400000 AQ | 224 11100000 EO
33 DDDO0A 21 87 01100001 a1 181 10100004 Al 225 11100001 EA1
00100 22 @8 01100010 a2 162 100010 AZ 226 11100070 E2
3B 00100011 23 % 01100011 63 | 4963 10400011 A3 | 227 11400011 E3
3 oDIHOD 24 | 100 01100100 84 | 184 10900900 2 A4 | 228 19900100 E4
ar oD1Dirod 25 101 0910001 a5 185 00107 AS 228 11100107 ES
3@ 0G0 26 | 102 01100110 66 | 166 10400410 A6 | 230 11100110 E6
¥ 00100111 27 | 103 011900411 67 | 467 19400411 AT | 231 19100111 ET
40 DOACA000 28 | 104 O010MDDD S8 | 98B 10000 AR | 232 14101000 ES
41 0oIorodd 29 105 01101007 [=1] 1688 10107004 Al 233 11101009 ES
42 DD1grgA0 25 A6 01101010 (= 170 19107010 L 234 11107040 EA
43 DO10I0M1 28 | 107 01109011 BB | 471 101011 AR | 235 11101011 EB
44 DDI0I00 2C 08 0110110 =14 172 101071100 AT 236 111071100 EC
45 00101101 20 | 108 01101901 (=11] 173 10101 AD 237 11107107 ED
46 0001110 2E | 110 01109110 BE | 174 40409440 AE | 238 19101110 EE
47 00101111 2F | 111 01104111 6F | 178 404011441 AF | 238 14101111 EF
48 DOI0000 30 | 112 110000 T | 1T8 107110000 B0 | 240 19110000 FO
49 10001 a 113 111000 ™ 177 107110001 23] 241 11110001 F1
80 00110010 ag 114 A1 00010 T2 18 107110910 B2 242 11110010 F2
81 00110011 33 [115 01110011 T3 | 179 10110011 B3 | 243 11110011 Fa
52 00110900 34 116 09110900 T4 183 101000 B4 244 11110100 F4
53 00110101 X5 117 e =} 181 1e1001 Bs 245 11110707 F&
54 0O110990 35 118 110710 T8 182 10110110 1] 248 11110110 F6
55 001101 . I 118 1101 v 183 10110711 ar 247 11110111 FT
56 0D919000 34 120 01117000 7 184 1011000 [ETL] 248 TI111000 FB
BT 00119001 39 | 121 04411004 79 | 485 10411001 AR | 248 14119001 Fe
54 00111010 3a | 122 p11140d0 TA | 1BE 10411090 BA | 25D 19919040 Fa
5% ODD111011 38 123 0119091 TH 187 10911011 Bl 251 19111991 Fa
a0 DOI11100 3C | 124 01194900 TC | 1BE 10911100 BS | 28R 11411400 PO
&1 DD111401 30 | 425 D1119404 O | 4BR A04119H BD | 283 41444401 FD
62 11140 3E 128 071111110 TE 180 101117110 5L 284 111711110 FE
H3 DO111999 3F | 127 D111 TR | 491 4044911 BF | 255 44414441 FF
¥wiid

bl i d i | . & | i &

I

M1 ™M1 m T T OO m

™

™ Tr TF ™M M

m

i ol T B B B B RE RE RE T LET BE BT IRE JBE IEE MEE REIRETRS

L

APPENDIX &
ROM ROUTINES (MCAL's)

Einstein ?56's machine operating system (MOS} resides in 16k bytes of ROM.
In addition to the usual bootstrap and housekeeping functions, it contains a
lot of very useful routines. It goes without saying that to fully utilise
all the features of the M0S, some knowledge of Z80 programming 1s essential,
and is not a task for the faint-hearted, or the unwary.

Each of Einstein 256's routines is accessed by a series of wvectors, -
machine calls, or MCAL's. Whilst it is possible to access these routines
directly, it is not recommended, since the actual locations of the routines
may change with various version of the firmware. Adhering to MCAL's will
ensure compatibility with any future versions of the firmware. Accordingly,
the absolute addresses of the routines are not given in this handbook.

Using MCAL's

Machine calls (MCAL's) are executed on a restart 8 (RSTOB) instruction,
jmmediately followed by the MCAL function number.

when using MCAL's, it is necessary to ensure that all parameters are met
when executing them, particularly when using graphics, sound and disc
routines.

xix

EINSTEIN 256 MOS INFORMATION

Function Source Description

Number Label

&0 ARITH Performs as "A" (ARITHMETIC) from MOS
Yalues Passed
®xx in HL pair
yyyy in DE pair

B BAUD Performs as "B" (BAUD) from MOS
Yalues Passed
% - Receive rate - upper nibble of L
register
¥ = Transmit rate - lower nibble of L
register
wwWw - Mode Byte - D register
zz - Command Byte - E register (See
chaper 5)
If DE is zero, the mode and command
bytes will remain unchanged.
For the correct receive and transmit
rates, the baud rate factor x 16 must
be used.

a2 CoPY Performs as “C" (COPY) from MOS

Yalues Passed
awxx = Start - HL pair
yvyy - finish - in DE pair
zzzz - destination - in BC pair.

83 DECIML Performs as "D" (DECIMAL) from MOS
Values Passed
xxkxx in HL pair

B4 DECML Performs as "D" (DECIMAL) from MOS

Values Passed

xixx - Start - in HL pair

yyyy - finish - in DE pair

zzzz - destination - in BC pair.

11 S S 1 S 4 S % S (O T B 8

| SN

Al

11

M M WM M

M

85 MFILL Performs as "F" (FILL) from MOS
Yalues Passed
wexx - Start - HL pair
yyyy - finish - DE pair
zz - Value - C register
86 GOTO Performs as "G" (GOTO) from MOS
Values Passed .
wxxx - Execution address - HL pair
yyyy - break point -DE pair (See
chapter 5 handbook).
If DE is zero, no break point is set.
87 HEX Performs as "H" (HEXADECIMAL) from MOS
Values Passed
Pointer to text (in RAM) - DE pair
The decimal number is held at (DE} and
terminated with Q0.
The hexadecimal number is returned 1in
the HL pair in addition to being
displayed.
88 CHARS Selects the character set, and performs
a system reset (MCAL ZSYSRS BE),
Performs as "L" command in MOS - See
chapter &.
Yalues Passed
% in HL 0 = Einstein (150646}
1 = ASCII
2 = German
i = Spanish
Yalues Returned
€ flag = 1 on return for error
Modifies
Al
ac MODIFY PERFORMS AS "M" (MODIFY) from MOS
Yalues Passed
xxxx - Address to modify from - HL pair
91 RDBLOK Performs as "R" (READ) from MO5

Values Passed

pointer to text (in RAM) - DE pair

The text takes the format as shown in
chapter 5 (See ZRBLK function no. Ad)

W

| 8

14!

14

1) ZINIT Re-entry point to MO5.

1 I |ll |ll |LI il.l.

11

oB ZRSCAN - Repeat key scan

This will return the value of any key
pressed, in the "A" register

00 15 returned if no key is pressed

00 can also be returned if the keyboard
poll rate (polled with this MCAL) is
greater than the key repeat speed.

This repeat speed can be altered in
scratch pad location FB43H.

Note This works as the KBD command in

EBASIC
On return, the Z80 "I" flag is set to
zero for a valid key.

L1 B Y B SLa |

.l

aC ZKEYIN - Input key

This will return the value of any key
pressed, in the "A" register.

Unlike MCAL 9B, this will wait for a
key to be pressed,

Mote This 45 similar to the INCH
command in Tatung/Xtal Basic.

On return, the 280 "Z" flag is set to
zero for a valid key.

{1 I

ol

ap ZGETLN - Get text from keyboard

This will enter a line of text from the
keyboard into RAM from the address held
in the DE pair. The test is displayed
on the screen on pressing the keys and
the 1ine is terminated with an ENTER.

| U 4

9E ZOUTC - Character Qutput

Outputs a character to screen held in
the "A" register.

MMM

Hxiii

9F ZPOUT Qutputs a character to the parallel
printer held in the "A" register,
AD ZSLOUT - Serial Output
OQutputs a character to the serial port
from the "A" register.
Al ZSRLIN - Serial Input
Read a byte from the serial port and
returns the value in the "A" register.
A2 ZRSECT - Sector Read
Reads a sector from the disk into the
sector buffer (A sector is 200H Bytes).
The following are set up in the scratch
pad.
Location Label
FBSOH HSTDSC - Drive number (0-3)
FESTH HSTTRK - Track (0-27H)
FBS2H HSTSEC - Sector (0-9)
FBS3H HSTDMA- Sector buffer address
(normally FEQOOH)
Drive error reports in the "A" register
on return:-
01 bad date (CRC error)
02 Write protect (MCALS A3 & A5)
03 Ko sector
04 No disk
05 No drive
00 or DB operation successful.
A3 IWSECT - Sector Write

Hr?tes the sector to the disk [see MCAL
A2

Drive error reports in the "A" register
(see MCAL AZ),

xxiv

A4

ZRBLK

- Read block

Read a block of data from the disk
Values Passed

Drive no. (0=3) in A register

Start address in HL pair

Finish address in DE pair

Sector (0-9) in B register

Track (0-27H) in C register

Memory is filled to the next complete
sector (200H bytes) i.e. if the start
and finish address is specified as
6000H and 600TH respectively, 6000H to
§200H will be read from the disk.

Drive error reports in the "A" register
on return (see MCAL AZ).

A5

ZWBLE

- Write Block

Writes a block of data to the disk.

The values passed are the same as for
MCAL A4 and again is written to the
next complete sectar {200H bytes)

Drive error reports in "A" register
(see MCAL AZ).

ICRLF

Outputs a CR [ODH) and an LF {OAH}.

AT

ZCRLFZ

Dutputs a CR and LF if the cursor is
not at column zero.

A8

Z5PACE

Outputs 1 space.

A9

ZPRAHX

Outputs 4 hex digits held in the HL
pair. e.g. if HL= 1234H, 1234 is output

ZP2HXZ

Outputs two hex digits held in the "A"
register followed by a space.

ZPR2ZHX

Outputs two hex digits held in the "A"
register (as MCAL AA with no space
output).

AC

ZFCAHX

Get a hex number (up to 4 digits] from
text into the HL pair. DE points to
the text (in HHHE. The number isg
terminated on a non-hex character.

AD

ZFCZHX

Get a hex number (up to 2 digits) from
text into the "A" register,

DE points to the text. The number is
terminated with a2 non<hex character.

AE

ZDCMD

Outputs a command to the floppy disk
controller. The command type 1s passed
in the "A" register. On return, "A" is
set to 00 unless the FDC 45 not
executing a command; then “A" is set to
FFH.

AF

ZHMDSC

Takes the drive head to track 00

The drive 15 selected by outputting
1,2,4 or 8 to port 23H (DSCPRT) on
return

£ =1 1f disk present

Z = D if disk not present

BO

ZIGBLK

Returns & value in the "A" register
from RAM pointed to by the DE pair if
DE 7FFFH, or ROM 1f DE 8000H.

NOTE: Commas and spaces are ignored
{(1.e. the first non comma/non-zero
character is displayed).

Bl

ZRDMEM

Returns a value in the "A" register
from RAM pointed to by the HL pair.

B2

ZRCPYU

Performs an LDIR instruction (switches
ROM out first).

B3

ZRFCYD

Performs an LDDR imstruction (switches
ROM out first).

B4

ZMouT

Outputs a value held in the "B"
register to the P56 port no. held in
the "C" register.

xxvi

AN U B (B U e T

L L |

il

1% S ¥ B! ¥ A §

b

B5 ZKSCAN Returns the value in the "A" register
on any key pressed.
00 is returned if no key is pressed,
This 95 similar to MCAL 9B ({ZRSCAN)
except that it is unaffected by the key
repeat speed. That is for each MCAL
execution, a value is returned.

BC ZITIME Set up CTC channels 2 and 3 to generate
1 second interrupts for the clock.

BD ZFORST Resets the FOC after an error,
Also resets the PSG {using MCAL CO
(XPINIT)

BE Z5YSRS This performs the following:-
1. Clears the screen to 40 columns
2. Resets all characters
3. Removes sprites
4. Resets the FIL and P5G
5. Masks the keyboard, fire and ADC
interrupts.

BF ZLOGOD OQutputs ***Einstein 256*** logo

CO ZPINRIT Sets P56 resistor 7 to 7FH and all
other registers to 00.

€l ISREG Sends an address held in the BC pair to
the EYDP. Data can then be output to
VRAM from port 8, Subsequent data
bytes sent will be Jloaded into
subsequency VRAM locations,
NOTE: A delay of B8Bus is necessary
between any YRAM reads or writes {e.g.
PUSH/POP}.
NOTE: When ROM is switched on, RST 20H
will execute this MCAL.

C2 ZVRIN Returns a value in the "A" register

from the VRAM address pointed to by the
BC pair.

xxvii

£3

ZVROUT

Writes data held in tha "A" register to
the YRAM address held in the BC pair.

C4

IPLOT

PLOTS or UNPLOTs pixel.

A=1 for PLOT

A = 0 for UNPLOT

I% holds the x coordinate

1Y holds the y coordinate

NOTE: UNPLOT has no meaning in graphics
mode 6.

C5

ZPLTXY

Plots a point according to the line
type (see below).

I¥ holds the % coordinate
IY holds the y coordinate

Line Type

Four scratch pad wvalues contain
information as to the line type to be
drawn, e.9g.

SCRATCH LOCATION
FBASH DOTON - Length to end of first

line

FBAGH DOTOFF- Length to end of first
space

FBAAH DOTONZ- Length to end of second
1ine

FBABH DOTOF2- Length to end of second
space

line type

DOTON

DOTOFF

DOTONZ

DOTOF2

Normally these 4 values are in
ascending order.

For a continuous line, DOTON is set to
FFH and the other 3 zero.

NOTE: 1If all Tine type bytes are zero,
the system will hand up. In graphics
mode 6, unplotted has no meaning.

wxviid

e | I . | . a O Ta i O T o i d

T L U (I

L/ ol Al

11

L% B B B W

Cé

ZPOINT

Returns the status of any pixel in the
"A" register.

In graphics mode 2:

foreground (or Z=
background (or Z=

= 0)
= 1]
55 = off screen

1
0
2

In graphics mode 6:

The colour value ({of the current
pallette) at the point specified in the
BC & DE registers is returned.

In both cases: BC contains the x
coordinate.
DE contains the y
coordinate

The VRAM address of the pixel is
returned in the BC register pair.

C7

IPNTXY

Returns the status of any pixel in the
A register.

This is identical to MCAL C6 except IX
contains the x coordinate and IY
contains the Y coordinate.

The VYRAM address of the pixel is
returned in the BC pair,

ca

ZORWTO

This will draw a 1ine from the
coordinates held in the IX and IY
registers to values 1in scratch pad
locations FB96H (X1) and FBYSH (Y1).
Each is a two-byte number,

The type of Tline drawn is determined by
the Tine type values (see MCAL C5).

(9

LPOLYG

This draws a polygon (or ellipse)

The polygon centre coordinates are held
in scratch pad locations FBYEH (CX) and
FBAOH (CY). Each is a two byte number,

The horizontal and vertical radii are
held in locations FBAZH (RADX-2BYTE)
and FBA4H (RADY-2BYTE).

The number of sides on the polygon is
determined by a two-byte number in
scratch pad Tocation FBAGH {(CINC).

®xix

A value of 4 will give a circle (256
sided polygon)

A value of 80H will give an octagon

A value of 100H will give a rectangle
ate

The start angle is passed in the DE
pair, the finish angle is passed in the
BC pair, each is in the range 0 to
1024,

The lines drawn to the polygon centre
are selected by setting the carry flag.

The type of 1ine drawn is determined by
the 1ine type values (see MCAL C5)

CA

ZORGCO

Adds the x coordinate Origin value held
in scratch location FB9AH (ORGX-2Byte)
to the contents of BC and returns the
result in the BC pair and adds the y
coordinate Origin value held in scratch
Tocation FBICH (ORGY-2Byte) to the
contents of DE and returns the result
in the DE pair. This MCAL 15 of little
use and 1is called from within other
graphics MCALS.

The values ORGX and ORGY are normally
xero but when altered will cause all
graphics output to be offset by that
value, This is similar to the ORIGIN
command 1in BASIC, - Kot wsed in
graphics mode,

CB

ZCALAD

Returns the VRAM address in the BC pair
for coordinates x and y passed in IX
and IY registers respectively. The
pixel position within the 8 pixel row
15 returned in the E register counting
from the left hand pixel (0-7).

Not used in graphics mode 6.

ce

ZSETCL

Writes data held in the "A" register to
the pattern-generator table address
passed in the BC pair (0 to 17FFH} and
sets the corresponding byte in the
pattern colour table (2000H to 37FFFH)
to the contents of scratch locations
FB39H (GCOLR).

Not used in graphics mode 6.

XXX

il

co IFILL Fills an area on screen surrounding
coordinates passed in the 1X and IY
registers (x and y coordinates
respectively].
If the fill is in foreground (i.e. the
point at x,y¥ is not set) then scratch
location FBADH (FILLMOD) must be set to
ZBrao.
MCAL ZPNTXY (C7) can be used to find
the fi11 type needed.
In graphics mode 6 FILL fills over the
point sgec1f1ed. up to a border defined
by a colour change.

1

il

CE ZIMULT Multiplies the contents of the DE pair
and the contents of the BC pair and
returns the value in DEHL (The DE pair
is the most significant].

CF ZPRM Outputs a message to the screen. The
data follows the CF data byte and must
be a character in the range 0 to 7PH.
The message is terminated by adding BOH
to the last character in the message.

NOTE: This MCAL will not work from ROM.
From ROM a "RST 1BH" will print out a
message in the same manner.

0o ZVouT Outputs a character from the "A"
register to the current cursor position
without incrementing the cursor
position. This can be useful to
prevent scrolling, linefeeds etc.

N

bl

D1 Z5CURS Returns VRAM addresses relating to the
current cursor position.
The ASCII text map address is returned
in the BC pair {(will be in the range
3CO0H to 3FBFH).
The table pattern generator address
(first byte) 1s returned in the DE pair
{will be in the range 3CO0OH to 3FBFH).
The table pattern generator address
{first byte] is returned in the DE pair
{will be in the range Q000 to 17FFH).
The start of the sprite pattern/text
pattern table is returned in the HL
pair [(normally 1800H).

ki

wnd

05

INTVDP

Write data B to EVDP register C
Yalues passed: BC

Values returned: None

modifies: AF;BC

D&

ZWTRGS

Copy RAM from (HL) to the EVDP register
range B to C.

Values passed: HL,BC

Values returned: None

Modifies: AF;BC;HL

D7

ZRDVDP

Read from EVDP status register A into A
Values passed: A

Values returned: A

Modifies: AF;BC

D8

Z5ETBL

Set VRAM address Al4 to Al7 faor
read/write (A17=upper 64K VRAM).

Values passed: A

Values returned: None

Modifies: AF

D9

ZVCMD

Issues a command to EVDP according to
the command table data in the scratch
pad.

Values passed: None

Values returned: None

Modifies: AF;BC;HL

DA

ZSET16

Sets address lines Al4 and Al5 (16K
block) for VRAM page D.

Values passed: 2MSB's of B register
Values returned: None

Modifies: AF

]}

ZBCOL

Sets EVDP register 7 (colour reg) to
the text colour from (TCOLR) - OFB38
(upper nibble), and the backdrop colbur
from (BCOLR) - DFEHEH

Values passed: None
Values returned: None
Modifies: AF,BC

oc

ZUTIL

Loads COPY, or BACKUP utility from ROM
to RAM at IDDH

Values passed: A

0 = Load copy

1 = Load BACKUP

Values returned : Nane

Modifies: AF;BC;DE;HL

xxxii

Track Preamble

Padding

NOTES:

Bytes
iz
12

3

—]
My = Ll P M] mef e e)

-

APPENDIX H

DISC FORMAT
Value
4F
oo
F&
FE Ident Address Mark
a Track No.
00 Side No,
3 Sector No.
0z
F?7 CRC (Converted to 2 bytes
controller)
4
0Q
F5
FBE Data Address Mark
. Data
4E To end to
track

On the disk, tracks 0 & 1 are "System tracks".

eaxiid

APPENDIX J
INTERFACING TRANSIENT PROGRAMS

This information is dincluded for the experienced user who has some
knowledge of Z80 Machine Code programming. Inexperienced users are
advised to vrefer to other publications relating to Machine Code
Programming before a full understanding of this section can be grasped.

To run transient programs will normally require the use of DOS facilites
such as input/output, file creation, opening, closing, reading and
writing. A1l of these and other facilities are handled by a set of DOS
"functions", accessed by placing the “function number® into the ZBO C
register, and performing a CALL instruction. DOS functions may also be
called by means of a CALL to location DOOSH in memaory.

In addition to supplying a function number, it is usually necessary to
pass parameters into the DOS function, and to obtain results. The
following conditions then usually apply.

E register - 8 bit value passed to the function.

DE register - 16 bit value passed to the function.

A register - 8 bit value returned by the functionm,
HL register - 16 bit value returned by the function.
DOS Functions

Function 0 Warm Boot (System Reset)
Parameters: C: OOH
Returned Value: MNIL

Function 1 Console Input
Parameters: C: OTH
Returned Value: A: ASCII character input

Function 2 Console Qutput
Parameters: C: 02ZH E: ASCII character to output
Returned Value: NIL

Function 3 Auxiliary Input
Parameters: C: O3H A: ASCII character input
Returned Value: A: ASCII character input

Function 4 Auxiliary Output
Parameters: C: 04H E: ASCII character to output
Returned Value: NIL

Function 5 Printer Output
Parameters: C: 05H E: ASCII character to output
Returned Yalue: NIL

xuxiy

| N | | 3 r kel ikN | n N iy kEd (EE IRN IBRFE ‘BT

Function & Direct I/0
Parameters: C: 06H E: OFEH if status required,
OFFH 1f input required,
else ASCII character to

output
Returned Value: A: ASCII character or Status value

Function 7 Get I[/0 wvector
Parameters: G: O7H
Returned Value: A: I/0 vector setting

Function B Set I/0 vector
Parameters: C: 0BH E: I/0 vector setting
Returned Value: NIL

Function 9 Display message
Parameters: C: 094 DE: Address of Start of
Message

Returned Value: NIL

Function 10 Console Line Input
Parameters: C: OAH DE: Inmput Buffer Address
Returned Value: Input characters in buffer

Function 11 Console Status
Parameters: C: OBH
Returned Value: A: Status value (FFH if character ready.

NIL).

Function 12 Return Version No.
Parameters: C: 0OCH
Returned Walue: HL: Version Ho.

Function 13 Reset Disc System
Parameters: C: OOH
Returned Value: NIL

Function 14 Select Orive
FParameters: C: OEH E: Drive Ho.
Returned Value: NIL

Function 15 Open File
Parameters: C: OFH DE: FDESC Address

Returned Value: A: Directory Code

Function 16 Close File
Parameters: C: 10H DE: FDESC Address

Returned Value: A: Directory Code
Function 17 Get 1st Directory Entry

Parameters: C: 1TH DE: FDESC Address
Returned Value: A: Directory Code

XEXY

Otherwise

Function 18 Get next Directory Entry
Parameters: C: 12H
Returned Value: A: Directory Code

Function 19 Erase File
Parameters: C: 13H DE: FDESC Address
Returned Value: A: Directory Code

Function 20 Read Sequential
Parameters: C: T4H DE: FDESC Address
Returned Value: A: Directory Code

Function 21 Write Sequential
Parameters: C: 15H DE: FDESC Address
Returned Value: A: Directory Code

Function 22 Create File
Parameters: C: 16H DE: FDESC Address
Returned Value: A: Directory Code

Function 23 Rename File
Parameters: C: 17H DE: FDESC Address
Returned Value: A: Directory Code

Function 24 Get Drive Log Vector
Parameters: C: 18H
Returned Value: HL: Log Vector

Function 25 Get Current Drive
Parameters: C: 194
Returned Value: A: Current Drive No,

Function 26 Set Buffer Address
Parameters: C: 1AH DE: Buffer Address
Returned Value: NIL

Function 27 Get Allocation Vector
Parameters : C: 1BH
Returned Value: HL: Allocation Vector Address

Function 28 Lock Drive
Parameters: C: ICH
Returned Value: NIL

Function 29 Get Drive Lock Vectar
Parameters: C: 1DH
Returned Value: HL: Drive Lock Vector

Function 30 Set File Attributes
Parameters: C: TEH DE: FDESC Address
Returned Value: A: Directory Code

Function 31 Get Drive Parameter Address

Parameters: C: 1FH
Returned Value: HL: Drive Parameter Block Address

Kxxvi

Function 32 Set/Get User Code
Parameters: L: 20H E: OFFH if getting USER code
CODE 1f setting USER code

LA L S A (I (N (TR TR Y

LN 1 S U ¥ SR § B ¥ ¥ A

Returned Value: A: Current User code

Function 33 Read Random
Parameters: C: 21H DE: FDESC Address
Returned Value: A: Error Code

Function 34 Write Random
Parameters: C: 22H DE: FDESC Address
Returned Value: A: Error Code

Function 35 Compute File Size
Parameters: C: 23H DE: FDESC Address
Returned Value: A: Random RECORD set

Function 36 Set Random Record No,
Parameters: C: 24H DE: FDESC Address
Returned Value: A: Random RECORD set

Function 37. Reset Drive
Parameters: C: 25H DE: Drive Vector
Returned Value: A: O

Function 38 Return to MOS
Parameters: C: 26H
Returned Value: NIL

Function 39 Set Password
Parameters C: 27H DE: Address of start of
password
Returned Value: A: Error Code

Function 40 Write Random (zero fi11)

Parameters: C: 28H DE: FDESC Address
Returned Value: A: Error Code
Error Codes:

01 reading unwritten data

02 {not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent

05 (not returned in read mode)
06 seek past end of disc

XxEyii

APPENDIX K

1/0 PORTS

lAddress (HEX) | Direction | Function
Programmable Sound Generator

00 R/W Software reset for PSG

01 and FOC

02 R Read from PSG

03 W latch address
Yideo Display Processor (¥9938)

08 R/W YRAM data

09 W only register data

0A W V9338 port for writing to

palette
0B W V9938 port for indirect
access to registers

Programmable Communications Interface (8251A)

10 R/W data register
1 R/W control/status register

Floppy Disc Controller (WD1770)

18 R/W status/command register
19 R/W track register
1A R/W sector register
18 R/W data register

Auxiliary Command/Status "Register®

20 R b0 "Fire™ Button 1

bl "Fire" Button 2

b2 Printer "Busy"

b3 Printer "paper
empty™

bd Printer "Error"

b5 GRAPH/ALPHA key

b6 Control key

b7 shift key

b0 keyboard interrupt
mask =
"1" to mask
b1-b7 not used

Xxxyd i

mask .

Address (HEX) Direction Function
Psuedo ADC Mask
21 W b0 = 1 to mask, bl1=7 not
used,
22 R/W Alpha Lock LED. Toggles
with each port access. A
reset light the LED.
risc Drive Select Port
23 W only b0 Drive 1
bl 2
b2 3 =1 to select
b3 4
b4 Side Select
24 R/W Rom select port. Toggles
within each access (ROM
selected on Reset).
25 W only "Fire" Button interrupt

b0 = 1 to mask; b1-7 not

used,

Various System Inputs and Parameters

26

RD

b0 1 = Alpha Lock
pressed

b1 1 = ROM enabled

b? Dipswitch 1

b3 Dipswitch 2

b4 Dipswitch 3

b5 Dipswitch 4

b6 0 = mouse connected
b7 cassette input.

key

Counter-Timer Circuit (ZBOACTC)

28
29
2R
2B

R/W
R/W
R/W
R/W

Channel 0 control/data
register
Channel 1 control/data
register
Channel 2 control/data
reqister
Channel 3 control/data
register

XXX

[Address (HEX} Direction Function
Input/Output Port A (parallel printer and joystick)
PIN | INPUT QUTPUT
30 R/W b0 1 Forward Data O
b1 z Backward Data 1
b2 3 Left Data 2
b3 4 Right Data 3
b4 3] Fire 1 strobe
b5 7 Fire 2
Paper empty| General
bb g Error Genaral
b7 No connection Read
as 0
Port A interrupt
3l W EEH = Enable Interrupt

00, = Disable Interrupt

Default value = 00

(Interrupts not used for
printing!)

Imput/Output Port B (parallel printer and

jaystick)

32

R/W

bO
b1
b2
b3
b4

Forward Data 4
Backward Data &
Laft Data 6
Right Data 7
Fire 1 General
b5 Fire2/Busy | General
b6 Acknuw1edgq General
bY no connection read as "0"
Default = all outputs = all high

00 = O P e P e

38

Control Register

Left/Right, joystick 2
Forward/Backward, joystick 2
Left/Right, joystick 1
Forward/Backward, joystick 1

ad O LT
nm m w

Data Register

127= Centre, 0 down/left

255 = up/right. No other values
returned,

Printer Strobe, and EVDP

80

Bit 0: O
Bit 1: 0

VDP mask on
Strobe mask on

¥

(it Ef RE (k® (RN IER O IKN INE

L

el R R R R BT Rt RE O RE

1)

CPU MEMORY MAP - W05

FFFF —

FDOE

FCIt -

FBOO

APPENDIX L

MEMORY MAPS

STACK

. s R e e

INTERRUPT ROUTINES |

SCRATCH PAD

003A —

0000

LINKS TO ROM

x11

CPU MEMORY MAP - DOS

FFEF

PHYSICAL SECTOR BUFFER
FEODO

FD&0O DRIVE _ALLOCATION TABLES

FDOO VIRTUAL SECTOR BUFFER

MOS STACK
EC27 INTERRUPT ROUTINES
SCRATC
FBOO it e
FA00 BI0S
ECO0 BDOS
E100 <t
TPA

/_/M—/

s

TRANSIENT
PROGRAM
AREA
[TPA)

0100

0000 DOS SYSTEM PARAMETERS

X111

VYRAM YIDED MEMORY MAP - GRAPHICS MODE 2

TEXT POSITION TABLE

3C00 —
IBE0 — FUNCTION KEY TABLE
B0 — SPRITE ATTRIBUTE TABLE
PATTERN MAME TABLE
3800 .
COLOUR TABLE
2000 —
TEXT PATTERMN TABLE
e T RN T e aie s e st
-.-.______H__.‘_‘,.-""ﬂ-_\\-_-""r-"‘_-.—“
M"Hﬂ-"
PATTERN GENERATOR TABLE
0000 —

x1iv

VRAN VIDEO MEMORY MAP - GRAPHICS MODE 6

FFFF __

/—— FUNMCTION KEY TABLE
—FBoDO

SPRITE ATTRIBUTE TABLE

s

FAB0

Fadn

Foop __

TEXT PATTERM TABLE

SPRITE COLOUR TABLE

ESQ0

TEXT POSITION TABLE

UNUSED

Cooo

8000 — (-

PATTERN NMAME TABLE

xlv

VRAM VIDED MEMORY MAP - TEXT MODE 2

000 —

3880 —

2000

1900 —
1800—

0800 —

0000 __

UNUSED

FUNCTION KEY TABLE

8=~ B0 BYTES

e, . OWUBED

COLOUR TABLE

TEXT PATTERM TABLE

e — ——— -~ . — | — i——

SPRITE PATTERN TABLE

UNUSED

PATTERN NAME TABLE

21w

-— 100 BYTES

Il.l I.I.I 19| 14 | .

1% 1§ S 8 ST § S 8 S | S ST i

Ll

L8 | A

11

APPENDIX N
SAMPLE FILE HANDLING PROGRAMS
File Handling

The following examples are given to illustrate the facilities outlined in
this section.

a) A text file display program.

This program allows the display of data or ASC files on the screen. It
performs virtually the same function as the DISP command in EDDS, and it
works at approximately the same speed.

10 REM TEXT FILE DISPLAY PROGRAM

20 N=128: REM MNo. of characters read at a time.
30 INPUT "File to display?"; NAMES

35 IF NAME$="" THEN DIR: GOTO30

40 ON EQF GOTOS8O

50 OPEM NAMES,FD%

60 INPUT# FD3

70 PRINT INCH$(N);: GOTO 70

80 CLOSE FD3

90 END

Try replacing line 70 with the following, noting how much slower it is:
70 PRINT INCH$;: GOTO 70 or try smaller values of N in line 20.
b) A simple Mailing List (Sequential Access).

The program below is a simple mailing 1ist program showing as 1t does the
use of sequential access for reading and writing files. In this case,
the data file is read into a large string array M§ at the start of the
program, and rewritten to the file SMAIL.DAT at the end.

This means that access to particular customers is very quick, but at the
expense of keeping the entire file in memory at once. Moreover, the
maximum number of customers that the system can handle is limited by
memory size, and the size of M$ as dimensioned in line a000.

The information under each customer consists of his/her name, telephone
no. and address, the address being stored in to lines, or fields. The
array CUST$ holds these items temporarily when being accessed by one of
the program options.

x1viid

The options supported by the program are to add a customer to the list,

to access a customer from the list for modification, and to 1ist all
customers to the screen or printer.
E DRIVEQD
10 REM #*** SIMPLE MAILING LIST PROGRAM (SEQUENTIAL
BLCCESS) weww
20 REM
30 GOTD 9000
98 REM
99 REM ***COMMON ROUTINES®+*
198 REM
199 REM ***OPEN DATA FILE***

200

210
220
230
240

250
260
270
280
290
295
238
299
300
310

Sel
398
399
400

410
420
430
440
450
da0
470
480
490
499
798
799
800
810
820
830
840
850
870
880
290

PRINT:PRINT "Do you have a file to load

{(Y/N)?";:Y$=INCHS

PRINT Y$: IF Y$="N" THEN RETURN

CLS: PRINTE4,10;"Reading in data file..."

OPEN FILE$.FDS

%??UT# FD%; NCUST: REM Get No. of customers on
e.

IF NCUST=0 THEN 290

FOR I=0 TO NCUST-1

FOR J=0 TO 3: INPUT M$(I,d)

NEXT J,1

CLOSE

RETURN

REM

REM ***HEADING DISPLAY***

CLS: PRINT®8,0;HEADS

PRINT@3,2;"Number of customers on file: ";NCUST:

PRIKT

RETURN

REM

REM ***yRITE NEW DATA FILE**%*

PRINT: PRINT "Do you wish to save the file

{Y/N}?":: YS$S=INCHS

PRINT ¥$: IF Y$="N" THEN RETURN

CLS: PRINT@4,10:;"Writing New Data file..."

CREATE FILES,FD%

PRINT# FD$: NCUST

IF NCUST=0 THEN 490

FOR I=0 TO NCUST-1

FOR J=0 TO 3: PRINT M3$(I,d)

NEXT J,1

CLOSE

RETURN

REM

REM ***MENU DISPLAY***

CL5: PRINT®E,0;"SIMPLE MAIL LIST PROGRAM"

PRINT®4,3;"0ptions:"

PRINT®4,5;"0. Exit Program"

PRINTE4,7;"1. Enter Customers"

PRINTO4,9:"2. Modify Customers"

PRINT @4,11;"3,List Customers"

PRINTR4,13;"Which? “;: N$=INCH$(1): PRINT

N=VAL{N$): IF N O OR N 3 THEN PRINT BEL%: GOTO 870

IF N=0 THEN GOSUB 400: CLS:PRINTE@S,0:"GOODBYE!":

BEL$: END «Iviid

% & | 'e & | i B 'R BRI 'y | 'd & | i [§ & | R o i

'y " E 1| " 81

'R R}

o AR R b R P RO v ot R RE O RE O RO KT M AT

898
299
900
910
998
999
1000
1010
1020
1030

1040
1050
1080
1070
1080

1090
1999
2000
2010
2030
2040

2050
2060
2070
2080
2090
2100
2110
2120

2130
2140

2150
2160

2170
2180
2190
2999
3000
3010
3020
3030

3040
3050
3080
3070

3080

3090
3100

REM
REM ***SELECT OPTIONS***
ON N GOTO 1000, 2000,3000
EE&P: REM SHOULD NEVER GET HERE!
REM ***END OF COMMON ROUTINESH#*
REM ***MSUB]1 -- Enter Customers*e
HEADS="ENTER CUSTOMERS"
GESLIB 300
PRINT®Any more customers to add (Y/N)7?"::Y3$= :
PRINT Y$: PRINT i S
IF Y$ ™Y" THEN 800
FOR I=0 TO 3
PRINT PRMPTS(I);: INPUT CUSTS(I)
NEXT
FOR I=0 TO 3: M$(NCUST,I)=CUSTS(I):NEXT:NCUST=
NCUST+1
GOTO 1020
REM
REM ***MSUB2 -- Modify Customers**+
HEAD$="MODIFY CUSTOMERS"
GOSUE 300
INPUT ®Customer No.?(If mod's finished press F)
«« ";CN3$: IF CN$="F" THEN 800
EH=E§L#EH$J: IF CN=0 OR CN NCUST THEN 2040
FOR I=0 TO 3: CUST${I)=M$(CN,I): NEXT
PRINTE3,8;"Customer No. :",CN+1
FOR I=0 TO 3
PRINT I+1;PRMPTS(I),CUST$(I)
NEXT: PRINT
PRINT "Any changes for this item
(Y/N)?"; :Y$=INCH$:PRINT ¥§
ol e e 1
"Which line (2-4)7";:Y$=INCH$: PRIN :
e $ $ TY$
I=VAL(Y$)-1
IF I=0 OR I 4 THEN 2030 ELSE PRINT PRMPT$(1);:
INPUT CUST$({I): CLS

GOTO 2080

FOR 1=0 TO 3: M${CN,I)=CUSTS(I): NEXT
GOTO 2030

REM

REM ***MSUB3 -- List Customers¥+*+*

HEAD$="LIST CUSTOMERS™

GOSUB 300: IF NCUST=0 THEM 800

PRINT "To Screen or Printer (S/P)?";: PF$=INCH$:
PRINT PF3:PRINT

IF PF$="P" THEN PRINT#1

FOR CH=0 TO HCUST=1

PRINT "Customer No. :",CN+1

EE?H%=H TQ 3: PRINT PRMPTS(1),M${CN,I): NEXT:

IF PF$ "P" THEN INPUT "PRESS ENTER to go on:";Y$:
PRINT

HEXT CN

PRINT# 0: GOTO BOO

xlix

8998 REM

8999 REM ** INITIALISATION **

9000 3SEP 44: REM Use separator for DATA below
9010 BEL$=CHR$(7):REM Beep

9020 CMAX=100: REM Max. Mo. of customers allowed
9030 DIM M$({CMAX-1,3),PRMPTS(3),CUSTS(3)

9040 FOR I=0 TO 3: READ PRMPTH(1): MEXT

9050 FILE$="SMAIL.DAT": REM file name

9060 SEP O: REM Allow commas 1n input text
9070 ZONE 28,20: REM Set up zone width

9080 GOSUB 200: REM Read in data file

9090 GOTO 800: REM Go and do your stuff|

9098 REM

9099 REM *** DATA FOR FIELD PROMPTS**+

3100 DATA "Customer MName:","Telephone Mo.:"
9110 DATA “Addr. Line 1","Addr. Line 2 :“

¢) A simple Mailing List (Random Access)

The program suite below is given to 1{llustrate both the use of
random-access files and the 'semi-chain' facility., It does the same job as
the single program at example b), but with much less memory, and shows how
the random-access method improves the file-handling capability. The Timit
on the number of customers is now dictated only by the free disc space
available, and the array M} of example b., is dispensed with,

The suite consists of four programs, the common and setting-up routines,
and the three sub-programs which deal with the three options currently
supported (see example b, above).

A record length of 75 characters 1s used, this limits the amount of
information that may be held on each customer, checks being needed to
ensure that the total lengths of the fields entered (NB, including CR and
LF codes!) do not exceed this length. Such checking may be found at lines
1090-1100 in MSUB1, and 1170-1180 in MSUB2 below. This kind of check is
not necessary with a sequential file.

The first record contains the total number of records on file (NCUST), and
provides a useful way of preventing access above the limit available.

Finally, note the use of the ON ERR routine at 100, which makes special
checks for CHAINing to a non-existent sub-program, and allows the user to
create a new data file if one is not present.

I R 1 e

FE &1

LD S LR R S Bt N DY % B 8 SN S Y f DY Y R Y B Y B Y Rt Y et Y e ol N4

f

[|

10 REM **SIMPLE MAILING LIST PROGRAM (RANDOM ACCESS)w*

20 REM *** COMMON ROUTINES ***
30 ON ERR GOTOD 100

40 GOTO 1000

98 REM

99 REM *** FRROR ROUTINE **

104
110

120
130

140
198
199
200
210

220
298
239
300
310

320
798
799
800
B10
820
B30
240
B50
870
BBO
890
B93
899
900
910
998
999

IF ERL=900 THEN PRINT "CAMNOT INVOKE DESIRED
OPTION";BEL$: GOTO 800

E;DERR 25 THEM PRINT ERR%;" Error in line “;ERL:
PRINT "Mo data file -- Create (Y/N)?";: Y$=INCH%
IF Y$="Y" THEN CREATE FILEY$,FD$: PRINT# FD§;"0":
CLOSE

GOTO 800

REM

REM *~* OPEN DATA FILE *~

OPEN FILES.FD3,RL

INPUT# FD$,0;NCUST: INPUT# 0: REM Get No. of
customers on file

RETURN

REM

REM *** HEADING DISPLAY #**¥

CLS: PRINT@S,0;HEADS

PRINTE3,2; "Number of customers on file: ";NCUST:
PRINT

RETURN

REM

REM *** MENU DISPLAY %*=

CLOSE: CLS: PRINTRS,0;"SIMPLE MAIL LIST PROGRAM"
PRINTE4,3;"0Options:"

PRINT®4,5;"0. Exit Program"

PRINTE4,7;:"1, Enter Customers™

PRINT®4,9;"2. Modify Customers"™

PRINT®4,171:"3. List Customers®™
PRINTE4,13;"Which? ";: N§=INCH$: PRINT N%
N=VAL(N%): IF N O OR N 3 THEN PRINT BEL3: GOTO B70
IF N=0 THEM CLS: PRINT@S8,0;"GOODBYE!";BELS: END
REM

REM *** CHAIN TO OTHER SUB-PROGRAMS ***

HOLD 7000: CHAIN "MSUB"+N3%

STOP: REM SHOULD NEVER GET HERE!

REM

REM *** END OF COMMON ROUTINES ***

1000 REM ** INITIALISATION **

1010 SEP 44: REM Use separator for DATA below

1020 BELS=CHR$(7):REM Beep

1030 DIM CUSTS(3),PRMPTS(3)

1040 FOR I=0 TO 3: READ PRMPTS(I): MEXT

1050 FILE$="RMAIL.DAT": RL=75: REM File name & record

size

1060 SEP D: REM Allow commas in input text
1070 ZONE 28,20: REM Set up zone width

1080 GOTO 800:

1098 REM

1099 REM *** DATA FOR FIELD PROMPTS #*4*
1100 DATA "Customer Name:","Telephone No,:"
1110 DATA "Addr. Line 1 :","Addr. Line 2 :"

14

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

1000
1010
1020
"030
1040

1050
1080
1070
1080
1090
1100
1110
1120

1130
1140
1150
1160
1170
1180

1190
1200

1000
1010
1020
1040
1050
1060
1070
1084
1080
1100
1110
1120
1130
1140

REM *#¥% MSUE] =-=- Enter Customers #¥+*

HEAD%="ENTER CUSTOMERS"

GOSUE 200

GOSUE 300

FRINT"Any more customers to add (Y/N)?";:Y$=INCH$: PRINT Y$: PRINT
IF Y$ “Y" THEN 800

FOR I=0 TO 3

PRINT PRMPTS(I);: INPUT CUSTS(I)

HMEXT

L=0: FOR I=0 TO 3: L=L+LEN{CUST$(I))+2: MEXT

IF L RL THEN PRINT "RECORD TOO LONG";BEL$: GOTO 1030
PRINT# FD$,NCUST+1

FOR I=0 TO 3: PRINT CUSTS(I): NEXT: NCUST=NCUST+1
Eg;gTﬁﬂ;giﬁﬂ; NCUST: PRINT# 0: REM Update No. of customers

REM *** MSUB2 -- Modify Customers **¥
HEAD$="MODIFY CUSTOMERS"

GOSUB 200

GOSUB 300

INPUT "Customer No.?(If mod's finished press F)

.. "3CN$: IF CN$~"F" THEN 800

CN=VAL{CN$): IF CN=0 OR CN NCUST THEN 1040

INPUT# FDS,CN

FOR I=0 TO 3: INPUT CUSTH(I): NEXT: INPUT# O
PRINTE3,8;"Customer Mo. :",CN

FOR I=0 TO 3

PRINT I+71;PRMPT$(I),CUST$(I)

MEXT: PRINT

PRINT "Any changes for this item (Y/N)?";:¥§=
INCHS: PRINT Y%

IF ¥Y$ "™Y" THEN 1170

PRINT "Which Line (2-4)7";: Y$=INCH%: PRINT Y$: PRINT
I=VAL(Y$)-1: PRINT PRMPTS(I);: INPUT CUSTS(I): CLS
GOTO 1080

L=0: FOR I=0 TO 3: L=L+LEN(CUST${I)}+2:NEXT

%Eﬂh RL THEN PRINT "RECORD TOO LONG";BEL%:GOTO
PRINT# FD$,CN: FOR I=0 TO 3: PRINT CUSTS({I): NEXT: PRINT# 0
GOTO 1030

REM *** MSUB3 -- List Customers **+*

HEAD$="LIST CUSTOMERS"

GOSUB 200

GOSUB 300

PRINT "To Screen or Printer (S/P)?";: PF$=INCHS: PRINT PF$: PRINT
IF PF$="P" THEN PRINT#1

FOR CN=1 TO NCUST

INPUT# FD$,CN: REM Read Customer record from file

FOR I=0 TO 3: INPUT CUSTS(I): NEXT: INPUT# O

PRINT “Customer No. :",CN

FOR I=0 TO 3: PRINT PRMPTS(I),CUSTS(I): NEXT: PRINT

IF PF§ "P" THEN INPUT "PRESS ENTER to go on:";Y$: PRINT
NEXT CN

GOTO 800

111

14! Ll ILE | 8 1 o e IR 18 TR

LEN

LS DL Y T SUO W LR R Ll Al RE KR

ABS
ADLC
AND
APPEND
ASEC
ATH
AUTD
BALD
BCOL
BEEP
BIN%
BTN
CALL
CHAIMN
CHAR
CHRS
CLEAR
CLOSE
LS
CONT
Cas
CREATE
DATA
DEEK
DEF FN
DEG
DEL
DIM
DIR
DOKE
pos
DRAW
DRIVE
ELLIPSE
ELSE
END
EQF
ERA
ERL
ERR
ERR%
EVAL
EXP
FILL
FMT
FM
FOR
GCOL
G05UB
GOTO
HEX$

APPENDIX N
BASIC RESERYED WORDS

HOLD
IF
INCH
INCHS
INP
INPUT
INPUTH
INT
I0M
JOY
KBD
KBD%
KEY
LEFTS
LEN
LET
LIST
LISTP
LN
LOAD
LOCK
LOG
MAG
MGE
MID$
MoD
MODE
MOS
MULS
MUSIC
MEW
MEXT
NOT
MULL
OFF
N
OPEN
OR
ORIGIN
ouT
PCOL
PEEK
Pl
PLOT
POINT
POKE
POLY
POP
POS
PRINT
PRINTE
PRINT#

Tiii

P5G
PSMW
PTR
RAD
READ
REM
REN
REMUM
RESTORE
RETURH
RIGHTSS
RND
RST
RLIN
SAVE
SCREEM
SCRN$
SEP
SGN
SHAPE
SIN
SIZE
SPC
SPEED
SPRITE
SPRITE OFF
SQR
STEP
STOP
STR%
SWAP
TAB
TAN
TCOL
TEMPO
THEN
TI$

T0
UNLOCK
UNPLOT
VAL
YDEEK
VDOKE
YDP
¥STAT
YERIFY
VOICE
VPEEK
VPOKE
WAIT
WIDTH
XOR
ZONE

APPENDIX P

Hardware Information

Technical Specification TCS256 Computer
Technical Specification TM11 Colour Monitor
Technical Specification TAI1 Television Adaptor
Circuit Diagram

Waveforms

List of Parts

19w

This appendix forms the Hardware Manual for Einstein 256. For service
information on the TM11 monitor, and TA11 television adaptor, consult the
respective service manuals.

The Einstein Home Computer - model TCS5256, features modular construction for
pasy service access.

As standard the computer is supplied with on integrally mounted 3-inch disc
drive, provision is made for the installation of a second, external disc
drive, should this be required.

Please MNote: In accordance with their policy of continued improvement,
Tatung reserve the right to change, alter or modify parts, components or
specifications as deemed necessary in order to maintain or improve product
performance, quality assurance and/or specifications.

As a consequence, this manual may be subject to change without notice, and
no responsibility can be accepted for errors and omissions.

1. HARDMARE INFORMATION
General Precautions

To prevent damage, and ensure correct functioning of the microcomputer, it
iz recommended that no form of repair, maintenance, or service, be attempted
by any person other than a competent engineer.

Safety - Power Supply

The d.c. power for Einstein 256 i1s provided by the TMI1 monitor, or the TAII
television adaptor. Om mno account must the Einstein 256 be commected

directly to the mains supply.
Handling Precautions

Einstein 256 contains semiconductor devices which may be damaged by static
electrical charges during handling. These devices are indicated by the
symbol on circuit diagrams. When replacing, or handling these devices, care
should be taken. Soldering irons must be earthed and personnel should use
conductive wrist bands earthed via a IMohm resistor. If the latter is not
practicable, they should discharge themselves by touching an earthed point
prior to handling any devices.

Component Replacement

Before removing, or replacing, any parts or components, always disconnect
the computer from its power supply (TM11 or TAI1).

Construction And Service Access

Einstein 256 features modular construction for easy service access.

NOTE: Before removing the cover, be sure to switch off the TMI1 monitor, or
TA11¥% television adaptor, and disconnect the monitor lead.

Tv

Cover
The moulded cover of the Einstein 256 may be removed as follows:-

1. Unscrew and remove the 6 retaining screws located under the base of the
computer.

2. Lift the cover clear, taking care not to place any strain on the
keyboard ribbon cable. Access to the DIP switch can be gained without
disconnecting the keyboard ribbon cable. To remove the cover completely
carefully disconnect the two keyboard ribbon cables,
Replacing the cover is the reverse of removal.
Sub-Assemblies
Einstein 256 comprises the following sub-assemblies:

Printed Circuit Board Assembly

Keyboard Assembly

Disc Drive Unit

2. TECHNICAL SPECIFICATION: TC5256 COMPUTER

C.P.U. ZB0OA - Clock frequency 4MHz
Memory: CPU 64k

ROM 16k

Video 192k

Total RAM 256k.

Display Generator: EQQSBJ M5X2 Enhanced Video Display Processor
EYDP).

7 graphic modes

2 Text modes - 40 column and B0 column text
32 multicoloured sprites
B active sprites per line
512 colours
colour palette
Resalution: 512 x 424 pixels (max)
Back : 16 colours

Twi

if RL Rk RE RE kR RE O (RE BT

LER

sy sl el RE EBR BE 0 RE O RE O IRE O IKR

Lo]

ites:

sprite Mode 1 - 8 x B or 16 x 16 pixels with an optional magnification

actor of 2. Up to 4 sprites per horizontal row can be displayed. Each
sprite can have one of 16 foreground colours, the background colour is
always transparent.

Sprite Mode 2 - 8 x § or 16 x 16 pixels with an optional magnification

actor of 2. Up to B sprites per horizontal row can be displayed, Each
horizontal line of the sprites can have one of sixteen foreground colours,
the background colour is always transparent.

Sprite Mode 1 is available in graphic 1, 2 and multicolour modes, and is
software compatible with Einstein sprites

sprite Mode 2 {15 available in graphic modes 3,4,5,6 and 7
sprites are not available in text modes,

Sprite Colour Selections:

For graphics 1 to graphics & modes inclusive, the sprite display colour is
detgrmined by the colour palette. In graphics mode 7, the 16 colours
available are fixed. The sprite colours for graphics mode 7 are:-

Code R G B Colour
Yalues

d 0 i Transparent

1 03 2 Dark Blue

2 3,0 0 Dark Red

3 3a B 2 Dark Magenta

4 Us3. 0 Dark Green

5 g 31aa2 Dark Cyan

B 3¢ af ¥ Dark Yellow

i 3.3 2 Grey

B T, Orange

9 1 J e Blue

10 r s B Red

11 FA I T Magenta

12 0 7 0 Mid Green

13 7 7 Cyan

14 LSO R Yellow

15 AR R White

Character Sets: Four character sets are provided in ROM.

[50646 (UK English) (default)

ASCII

SPANISH

GERMAN

Tvid

The default "Tanguage"
Fig.P.5) according to

setting is

selectable using DIP switches 3 and 4 (See

the table below. Any language may be selected Trom
software regardless of the default setting.

Language 53 54
46 OFF OFF
ASCII ON OFF
GERMAN OFF ON
| SPANISH ON ON
All character sets are software programmable. In addition to the 95

alphanumeric characters of each "language", there are 160 graphics symbals
common to all four “languages",

Displq; Output :

Linear RGB + Syncs, composite video, and audio.

Colour Encoding Standards:

NTSC only. The composite video output is encoded to NTSC standards for both

525 and 625 lines,

Line Standards:

Raster scanned 625

non=-inter]aced,

the default Tine standard is sel

The subcarrier frequency is 3.58 MHz.

lines, 50Hz or 525 1line 60Hz, interlace or
Line standard and interlace mode are software selectable,

ectable by means of DIP switch 51. (See fig.

P.5). OFF selects 525 lines 60 Hz. ON selects 625 lines, 50 Hz.
Printer Interface

Selectable using DIP switch 52 (see Fig P5). OFF selects parallel, ON

selects serjal.

Display Clock:

21.47727MHz for both 625/525 lines and 50/60Hz field.

Display Device:

An optional 14 inch TV grade colour display monitor, TM11, is available,
The monitor will provide the necessary power for the TCS7256 (Einstein 256)
and incorporates a loudpeaker and

For use with a standard dome

is available,

volume contral.

stic TV receiver, a television adaptor, TA11X,

The TA11X supplies power to the TCS256 and provides an RF
cutput, modulated with sound and vision.

Input/Output Facilities

serial Port

8 Pin DIN connector (M003), see Fig P.1,
Full duplex capability to RS232-C/V24 standards, Transmit and receive
speeds are software programmable between 45.5 and 9600 bauds.

Twidd

L | | | L | | 1 | | Lt i r 11 11! ll lll 'I.I .I.[.l.l III |ll. I—r

1. DSR (Data Set Ready) 5. TxD (Transmit data)

2. +5Y (15mA max) 6. RxD (Receive datal
3. DTR (Data Terminal
Ready) 7. CTS (Clear to send)

4. RTS {Request to send) &. OV

Fig P.-|+ VIEW LocEINg INTO BOCHET

Jaystick Ports:

Two 9 pin "D" connectors (see Fig. P.2) to accept "Atari® and MSX style
digital joysticks. The two ports also double as a centronics printer or

general purpose port.

Pin Joystick Centronics
Port A —

] Up DeD
Fa Diowm DB1

3 Left Dg2

4 Right DB3

& +5Y (15mA max) -

B FIRE 1 Strobe
7 FIRE 2 PE

3] Qutput 1 ERR

) oy oy

Port B

1 Up DB4

2 Down DBS

3 Left DB6&

4 Right DB7

5 +5 (15mA max) -

b FIRE 1 -

7 FIRE 2 BUSY
8 Qutput 2 ACKENOWLEDGE
9 oy v

Tix

Fig P.2

"YAMP" Interface:

Connection is via a 2 x

pch.

—
Dkﬂl:ﬂ-ﬂmm-h-{ﬂm—'!‘

o
—

e L [e p—
e = T

* Power may be taken from
lead, from all connectors,

+5Y

B Blue analogue o/
LPD Light pen detect
R red analogue o/p
GND analogue ground
G green analogue o
LPS Tight pen select
COMVID composite wid
GND analogue ground
co

av

C1 colour

ov

C2 bus

ov

C3

ov

Video, and Mouse and light pen interface,
Provides interfacing for Mouse, Light pen,
video superimpose and video to VRAM transfer,

18
p 19
20
21
22
/p 23
24
eo a/p 25
26
27
28
29
30
31
32
33
34

this pin providing
does not exceed 45

C4

oV

C5

oy

C6

oV

C7

av
CEDR
ov

¥5

av
DHLCK
ov
DHLCK
CSYNC
HSYNC

17 way edge connector (See Fig. P3) on the main CPU

Colour
bus
0V digital ground

colour bus direction
digital ground

ext. video switch
digital ground

high res dot clock
digital ground

high res dot clock
composite/field sync
horizontal sync

that the total external power

mA.

| ALLLLLLLLLELLLLY

TOP SIDE 24 68
1387 ————

UNDER SiDE
Fig-P.8
Sound OQutput :
Monitor audio: menophonic,

(MOD5 pin 4).

3V p=p (for all 3 channels at max

1x

—==' 34
—_— a3

amplitude

1L T S Y T L B 1

| L S A I |

| L L

% T SUB & B 4

|

13

Stereo Jack: 200mV/Channel into 4 ohms.

The stereo jack is capable of driving low impedance headphones.

EEIEEard:

Typewriter style QWERTY keyboard.

1. 4B alphanumeric/graphics keys, B function keys and 13 "control" keys, 4
aof which are cursor keys in a separate block.

2. A1l keys to have n key lock
i. Automatic repeat.

Cassette Interface:

out, with 1 key rollover.

A cassette read facility is provided, connection is via a standard 3.5mm

jack, MO11.
Monitor Connector:

8 pin DIN (MOOS) (Fig. P4)

1 Red 0.7v p-p (black = 1.5V)

g oy

3 Green 0,7V p-p (black = 1.5¥)
4 Audio

Blue 0.7V p-p (Black 1.5V)
+12¥
+5Y
Composite Video 0.65Y p-p

£ = O L

Fig. P.4

Vil LOORING INTO BOCKET

Txi

Sound:

Sound output is via the TM11, or via the T.V. when the TAIl 15 used,
A means of providing a variety of sounds, including chromatic music,
with envelope shaping is provided.

The sound generator has three "music® channels and one noise channel.
A stereophonic output is available from MD12, a 3.5mm jack, and can
drive low impedance headphones. Minimum impedance is 4 ohm/channel.

Sound channel A corresponds to Teft.
Sound channel B corresponds to the centre.
Sound channel C corresponds to right,
isc Drive:
Panasonic EME-150 low profile inch disc drive 1s to be incorporated.
Specification: Single Sided
100 t.p.1i.
40 tracks
MFM coding, double density
Fully enclosed cassette
Access time 171 ms average; 12ms track to track
Transfer rate 250 kbit/sec.
Sectors/track 10
Bytes/sector 512

Drive Expansion:

A further, self powered, drive may be added externally.
Media Specification:

500k Byte unformatted (250k Byte/Side)
400k Byte formatted (200k Byte/Side)

80 tracks total (40 tracks/side)

Double Density (MFM) recording

100 t.p.i

Double sided "flippy" cassette.

Software/Firmware:

Operating system EDOQS 1.4

Language EBASIC 4.5

Utilities COPY ; BACKUP; FORMAT; DOSCOPY; FKEY
Compatibility:

With the exception of the Joystick finputs, “Einstein 256",is downwards
compatible with Einstein (TCO1).

However, compatibility may not be preserved where Einstein [TCO1) software
writes directly to hardware.

1271

.
=

"
j - B | . bR | -
L 4
|- — _—
_ r]

xiid

11 e H

Fig. P5. DIP Switches

Text And Graphics Modes

MODE RESOLUTION CELL SIZE COLOURS SPRITES ACTIVE | YRAM USED
{PIXELS) {PIXELS)
* Text 1 2hb x 192 6. x'8 2 out of 512 ROME k
Text 2 512 x 192 6 x 8 4 out of 512 NOME Bk
* Multi
Colour 64 x 48 4 x 4 16 out of 512 4 per line ak
* Graphics
1 256 x 192 8 x 8 16 out of 512 4 per line 4k
* Graphics
Fd 256 x 192
or
256 x 212 & u 8 16 out of 512 4 per line 16k
Graphics| 256 x 192
3 ar
256 x 212 8 x 8 16 out of 512 8 per line 16k
Graphics| 256 x 192
d or
256 x 212 Bit mapped|16 out of 512 8 per line 32k
Graphics| 512 x 192
b or
512 x 212 Bit mapped| 4 out of 512 8 per line 32k
Graphics| 512 x 192
6 or
512 x 212 Bit mapped|16 out of 512 8 per line [123k.
two
screens)
Graphics| 256 x 192
or
256 x 212 Bit mapped 256 8 per line 128k
(two
SCreens)

* This mode is software compatible with

Einstein's Display Generator

Txiv

L T % T Y St Y S 1 A

11

(S W | T A S Y S N S Y S Y Y TS S

(3

3. TECHNICAL SPECIFICATION: TM11 COLOUR MONITOR
General :

The TM11 1is a standard resolution colour display monitor specifically
designed for use with Einstein 256 computer.

The TM11 supplies the low voltage power requirements of the Einstein 256.
Power, audioc and linear R.G.B. signals are routed via an 8-pin DIN
connector.

Chassis:

The TM11 is designed on a single pch with a fully isolated, switched mode
power supply.

An auxilliary power supply provides 45V dc and +12 dc for Einstein 256.
Mains ly:

220 = 240 Vac 50Hz. 2 core mains lead class 2 insulation.

Power Consumption:

a) 50 watts at zero beam current with max. external load of +5V @ 1.7A and +
12V @ 220mA.

b) 38 watts at zero beam current with no external load.

Picture Tube:

14" standard resolution (0.63mm stripe pitch) preconverged high voltage
focus. 90° mini-neck C.R.T.

Rotary Controls:

Brightness and Yolume - both situated at the front, concealed behind an
opening door, and mounted on the main pchb.

Mains On/Off:

Push switch for "on". Push again for "off". Main pcb mounting.

Power & Signal Comnector:

g Pin DIN

Pin Ho. Assignment Parameter
1 R 0.7Y p-p into 75 ohms
2 av Power Ground
3 G 0.7Y p=p into 75 ohms
i Audio 3¥ p-p
5 B 0.7Y p-p into 75 ohms
6 +12Y dec 0.5A dc max
7 +8Y deo 2.5 dc max
=

Comp Sync 0.65Y p=-p into 75 ohms
Ixv

Sound Output:

1 watt rms (nom) 10% T.H.D.

SEgngr:
3" Round 16 ohm

Safety:
Conforms to the requirements of B3415: 1979 Class 2.

Serv1cigg:

There are no user serviceable parts inside the TM11., Servicing should be
carried out by a competent engineer. If in doubt, contact your dealer.

4. TECHNICAL SPECIFICATION: TA11 TELEYISION ADAPTOR
General :

The TA11 is a low voltage power supply and modulator unit which 1s designed
to be used in conjunction with Einstein 256 as an alternative to a TMII
monitor and allows Einstein 256 to be used with a domestic TV or composite
video input monitor.

Chassis:

The TA11 is designed on two pch's. One carries the colour modulator section
and the cther carries the power supply section.

The modulator section produces a composite video output and RF output with
intercarrier sound, The power supply section produces +12V and +5Y to
supply Einstein 256.

The +5V supply incorporates a soft start switching regulator for improved
efficiency with overveltage and overcurrent protection and the +12V supply
1s a conventional series regulator.

Mains 1y:

TA1l - 220/240Y ac 50Hz. 2 core mains lead, class ? insulation.

TATTX - 90/120Y ac 60Hz. Standard black two core mains lead class ?
insulation.

Power Consumption:

25 wWatts typical (with Einstein 256 connected).

Txwi

1 Y T T B LB | B S

LI "L L |

11 T 1 S 2 I

1]

U

1A

h\

Power & Signal Connector:

B-Pin DIN

Pin No. Assignment Parameter

1 R F00my p-p

? v Power Ground

3 G 700mY p-p

4 Audio 3V p-p

5 B 0.7Y¥ p=-p

6 +12¥ dc 0.5A dc max

7 +58 dc 2.5A dc max

a Comp Video 0.65V p-p
inta 75 ohms

Video Phono Socket:

Composite Video Output 1V p-p,
RF Output (Phono Socket):

+10% into 75 ohms.

o TA11 TAT1X
Channel 36 (UHF) 13(VHF)
Encoding standard FAL NTSC
Jutput Level 1.5mV typical | 1.5mV typical

Safet[;

Conforms to the requirements of B5457: 1979

servicing:
There are no user serviceahle

carried out by a competent engineer.

parts inside the TAlLL.
If in doubt contact your dealer.

Tawid

Servicing should be

5. CIRCUIT DESCRIPTION
General

Einstein 256 computer uses the Z8OA microprocessor operating at its maximum
4MHz clock-rate, A1l peripheral functions are performed by large scale
integration (LSI) devices and the hardware design has been specifically
directed at minimizing the component count, A Targe part of the port
decading and interrupt logic has been included in the semi-custom (gate
array) device.

Each functional circuit block is described in detail, but no attempt will be
made to describe the internal architecture of any device except where this
pertains to the external operation of the circuit. Further information on
specific devices is available in the relevant manufacturers data. A circuit
diagram is included at the end of this section.

Central Processor Unit (CPU)

The CPU (I007) cperates at a clock rate of dMHz. This signal is generated
from the 8MHz master crystal X007 by the gate array I006. The gate array
provides buffered clock signals at 2MHz, 4MHz, and SMHz as appropriate for
each peripheral device, except the video display processor (I014) which has
its own crystal oscillator.

The address, data, and contral signals from the CPU are not buffered as the
Z80A provides sufficient drive capability directly from its output pins.
The RESET signal for the 780A it provided by the gate-array. A RESET signal
may be generated on two seperate conditions, namely: a keyboard reset (by
pressing the CRTL, GRAPH, and ALPHA-LOCK keys together) or a power-on reset,
If a keyboard reset is generated, the RESET and RESET signals remains active
for the period that the keys are held. The BUSROQ, WAIT, and NMI pins on the
ZBDA have discrete pull-up resistors fitted, but the INT signal is “pulled
up® by the internal circuitry of the gate-array which uses this function.

CPU Memory

The CPU memory consists of three devices 1008, 1011, 1012 which provide 16
kilo bytes of Read Only Memory (ROM) and &4 kilo bytes of Random Access
Memory (RAM). ATl the necessary control signals for memory access are
generated by the gate array which allow the ROM to be "bank switched™ with
the lower 32k of RAM under software control and generates the 8-bit refresh
signals for the dynamic RAM. The RAM used requires a multiplexed address
bus which is generated by 1009 end I010. The gate array controls the state
of these multiplexors wvia the MPX signal and ensures that both devices are
in the correct state for the ZB80A refreszh cycle to be used. The delay
introduced by resistor-capacitor combination ROOS, CO11, and two gates from
1003 allows the multiplexors 1009, 1010 to change state before the column
address is latched into the RAM.

Txviid

] LI D | T L BT Y B LT Y T 1

71

L L DU | D | Dl | D | D] Bl

L

Port Address Decoding

A1l the Input/Output (I/0) ports for the Z80A are decoded within the gate
array with the exception of the 5trobe Port at address 80H. In most cases
the decoded port address alone is generated by the gate array, but in some
cases signals specifically related to a particular device have been
provided.

Programmable Sound Generator (PSG)

=

The Programmable Sound Generator PSG) generates audio on three different
channels, these are then buffered and combined into two seperate outputs.
The P5SG also provides two 8-bit parallel ports which are used to scan the
keyboard matrix under software control. The P5G is provided with a reset
signal from gate array which allows a reset to be generated from software,
as well as during power-on or keyboard reset, This allows the registers of
the PSG to be set to a known state very quickly when required.

The three audio outputs from the P56 are buffered by transistors Q011, QO12,
0013 and their associated components. The resulting collector outputs are
combined in a resistor summing network to give a mono audio signal which is
fed via MOO5 (the monitor socket) to the monitor or television adaptor. The
output from the emitters of QO11, Q012, Q013 provide stereo output for the
Audio output socket.

Keyboard Interface

The keyboard is scanned under software control via the parallel ports of the
P5SG, the only exceptions to this are the GRAPH, CTRL, SHIFT, and ALPHA LOCK
keys which are connected directly to the gate array. A diode matrix,
consisting of diodes D013 - D020, ds used to give a "wired AND" logic
function which is also wused by the gate array to generate a keyboard
interrupt when this function is enabled., Combinational logic internal to
the gate array allows a "keyboard reset® to be generated when the GRAPH,
CTRL, and ALPHA-LOCK keys are pressed simultaneously.

The keyboard unit also has two Light Emitting Diodes (LED) fitted to it,
these give a "power-on" (green LED) and "Alpha Lock on" (red LED) indication
when 1lluminated. The Alpha Lock LED is fitted in the Alpha Lock key top,
and is driven from the gate array via an open collector inverter 1022. The
Power-On LED is driven directly from the +5V supply rails. Both LEDs rely
on the track resistance of the keyboard unit to provide current 1imiting.

Video Display Processor {VDP)

The display processor used is the Yamaha Enhanced Video Display Processor
(EDVP). This device is capable of displaying text and graphics in a number
of different modes, offering a variety of colour/resolution combinations.
The maximum addressable memory (192 kilo-bytes - 1015, 1016, 1017, 1018,
1019, 1020) is fitted as standard to allow all possible modes to be
exploited. The EDVP generates all the signals necessary to support this
memory which 15 accessed via the EVDP's internal registers.

Txix

The internal timing necessary for all operations within the EVDP is provided
by a single crystal oscillator which uses a 21.47727 MHz crystal (X004) as a
frequency reference. The video outputs from the EVOP give R, G, B, and
composite synchronising pulses directly. A composite video signal is also
provided,

The line standard may be set to 625 or 525 lines under software control.
Additionally, the composite video output is encoded to NTSC standards. The
RGB and Sync signals from the EVDP are buffered and clamped by transistors
QD05, 0006, 0QO007, 0008 and their associated components before being fed to
the monitor and VAMP connectors. The VAMP connector also carries all the
expansion signals from the EVDP (Colour Bus, Dot clocks, and Mouse & Light
Pen interface signals).

Floppy Disc Controller (FDC)

The FDC (ID21) handles all data transfer between the disc drive(s) and the
CPU. A maximum of two disc drives may be connected to the main circuit
board. A replacement signal cable is required for fitting the second disc
drive which also requires an external supply.

A disc drive is selected from software by setting the appropriate bit in the
drive select port, which controls the DS0, and DS1 pins from the gate array.
All other control signals are gemerated and interpreted by the FOC. The
reset signal for the FOC (MR} is generated by the gate array. This allows a
reset to both on a power-on or keyboard reset, and also under software
control in the event that the FDC cannot complete a valid command (usually
when a disc is not present in the drive).

Counter Timer Circuit (CTC)

The CTC is a device from the ZB0A family, and is used to provide the timing
for the real-time clock and for baud rate generation for the serial RS237
port. The CTC has four timing channels and these are dedicated one each to
receive and transmit clocks for the serial port, and the remaining two
channels are cascaded to give the slow clock rate required for the real-time
clock.

Programsable Communications Interface (PCI)

The PCI handles all serial input and output via the RS232 connector (MOD3).
All the necessary signals are controlled directly by the PCI and are
subsequently buffered by the level shifting devices 1001, 1002, The PCI
transmit and receive clocks are provided by the CTC. Thus the baud rate may
be set to a convenient rate under software control. Split transmit/receive
rates can be accommodated.

Tux

1 1 I B

L1 I

11

LTSNS Y LA 51 Y "L ! % S 1 S | T 1 T 1 ST ||

b

Joystick Ports

The joystick ports are connected directly to the gate array and have a
variety of means of access (from software}. The basic architecture of these
ports is that of open collector outputs with input lines comnected directly
to these outputs. This arrangement allows simple, switch type, joysticks or
games paddles to be readily interfaced when using the ports as inputs. To
maintain compatibility with Einstein (TCO1) computer circuitry has been
included to mimic the Analogue to Digital Convertor (ADC) fitted in that
machine. The parallel output ports are also used to drive a parallel
(Centronics type) printer if necessary and a strobe signal is provided to
complete this interface. A small section of circuitry (1023, 1024, I025) has
been included external to the gate array to give control over this strobe
signal and also the EVOP interrupt line in order to mask these signals when

required,

Interrupt Handling

The Z80A family parts contain circuitry to allow vectored interrupts to be
used when the ZB0 is in Interrupt Mode 2. Additional circuitry has been
incorporated in the gate arrays to enable the non-Z80 peripheral devices to
use this interrupt structure also. Interrupts generated by the printer
part, the joystick "fire" buttons, the keyboard, and the EVDP are all
available to the programmer. Each interrupt sfignal has mask logic
associated with it which gives control over the times at which the interrupt
is recognised by the CPU, and "Daisy Chain®™ priority encoding to ensure that
high priority interrupts are serviced first.

=12¥ Supply

The power supply unit (either a TM11 Monitor or TA11 Television Adaptor)
provides +5Y and +12V supplies. The RS232 output buffer device (1002}
requires a =12V supply. This =12V is generated by an astable multivibrator
0002, Q003 and driver circuit QO0T, Q004 and associated components which
drive a voltage doubler consisting of CO13, CO014, CO15, CO16, DOOZ, DOO3,
D004, DODS. This output from the doubler is regulated by a zener diode DOOI
and fed to the RS232 output buffer I[00Z.

Twxi

The majority of components used
available from stockists. If any are replaced, they should be of the same

PARTS LIST

type and rating as the original.

The following components can only be obtained from a Tatung authorised
stockist. When ordering quote the description and code number given in the

Tist.

Cct Ref.

X002
X004
X005
1006
1008
013
1014
1021
RSO0
5001
MOO1
Mooz2
Moo3
MO05
MOo&
MOOY
MO09
MO10

ﬂestriEtiﬂn

Crystal - B MHz

Crystal = 21.47727 MHz
Suppression Filter

Gate Array

Integrated Circuit - 16K ROM
Integrated Circuit - P.S.G.
Integrated Circuit - E.¥.D.P.
Integrated Circuit - F.D.C.
Resistor Pack - 6KBx12

DIF Switch Assembly (d-way)
Connector - Joystick Port
Connector - Joystick Port
Connector (DIN 8-way)
Connector (DIN B-way)
Cannector - Disc Drive
Connector - Drive "A" Power
Cannector - Keyboard
Connector - Keyboard
Keyboard

Msc Drive

Mounting Bracket - Disc Drive
Power Head - Disc Drive
Signal Head - Disc Drive
Lens - Function Key

Moulded Cover - Top

Moulded Cover - Base

Disc Copyright Assembly (Master

Disc)

Tuxii

in Einstein 256 (TC11)

Lode No.

16-1903-9
16=1910-1
15-7620-8
19-8243-5

19-8198-6/PG01

19-8100-5
19-8244-3
19-8110-2
11-5209-4
20-4068-9
22-8130-9
22-8130-9
22-8129-5
22-8129-5
22=-8131-7
ee=8132-5
22=-8133-3
22-8133-3
83-1587-6
17-0062-6
83-1586-8
22-8136-8
22-8137-6
B3-1614-7
83-1583-3

83-1584-1/10110

05-2666-5

are generally

b |

~diLY3 WOSND U= papn|aul 24
g5 swal)

LR e

apiE Uy

{s10ed QAT UOM b

.r_-._.-._-.._.w

peraaspug

B
-
B

AXARO @1
yoee oy apdeu)

AG resps, Beedwas

[rre—

-— |

a0u

amadu |

AYIREERT

G

R

R

HEIESH

tndyng
Jpald

{1

Lﬂuﬂa»aw

FECINEHT

L S L T
apqewwesBoag

T

Amjdarg oap s

]

syneding
DIPEA

A Jowap
OO A
HEGL

Asowap
N4 wiey
LLT]

(1 1

0

ITCLIFIU] WA

dding -
LI._Jr_E.I.—.

o
G

i

e

S
o

oo L
R
B fiara

S

i

apnchay
EETFER TS

~,

i1

ge

g
2

Lo

e
T

&

i

AB[R ALY
=g

Addogy

(=P EERT]

AR AT

e
e

=

i
e, .9..6.%
e

=

E:
ok
i

e
R,
e

e
e
o
S,

e

i

G
-

M

R

wapk dy Fuesadp

L]

H ol

-

It Il

EF0

a2

Fig P.6
Functional Block Diagram

Txxiii

AN [Fale EaTF AT

oz

LLET Nk

AR

vad v THLHT

LT

BEREPEES

ElEE a8

[l B I]]
| BN WOAET i BT B9 F sl T

CATE ARR&Y
MEMa-3

==
(i
Jp R—— P

— MY pin §
e
— s T

VAHF COMNECTOR

M4

Tuniv

HEEE ==

' |

SAREA RS

(5T
b i
& 19
& L}
ip Los a7 la1s

= :" [T i1 [T]

DRAM * ORaH

03 em
m sl
] 29T
s 2

= 5 (Wie 3IED

APt o R

%05
Rise L
RS

min

4]
a2 o1

a hide 12

M pRAM

b1
qadL-td

EXF&KSI0H
[HEL

by

| +17v

A

& b

ML

& CHDOLD

e il

s

II:‘-.-
A

SLTIC

EMDACAL
FIETS THL & FAIL

T TFE PEHT [4LT

5 DRIWE

— - — - r.
Mals Bdk

ray
w1 i
= w I
i E = o
i E

=11
Fil = |
i = | WFHE i oK TR z .Tl
|1 ! b b - ?‘I‘...-.._t-h.r FNC R 1a]] 1%
o e RS 11,
:a‘i.. " PR - [LEeFiran (e 1 FY} FERS |20

Asaul FEp— o [T ———1 7] 'H' e i)

up K
I7a bdtn TEFR ?l T LT 'IE :
& B lus ™
T
i
o T

SECEST

+5Y

- Vi R

b T e— 1 T

R e e

pd 78
ﬁﬂ.'i e
fidn
ik -.l,m,
¥ =12y
t am3
BT
28 JENER
L
Iy
F - BETHAL - BAT FIFTED TO AL HODELS
- T LB
B - W7 DEsECTRD -l -0 Fae 1
foms =

Fig. P.7. Schematic Diagram TC5256 Home Computer

INDEX
A
Alpha Lock,......-.. ki e 8. il 28
Arithmetic Operators.......... 87
T R e i B . 86
ASCII Codes...ovesvcanns PR i
Assigning Values......couvenee 91
B
Backing Stores.....ceeuuneas -
Backup..... Tk et T |
BASIC, e vnnnnmnn B doa i 4 06 o
Bibliography....cee-cass oy .5 hapig RS
Branch...c-esxs A o e ey
BREAK KEY...oanvmannss b i
C
CalculationS...ccueas RPN ey .
Central Processing Unit (CPU). 13
Character Cell...... e 214
Chevron...... v S SR el el
(1 |1 || S ——— anmnan s R
Command Mode.....oecauuss i R
Communication........ R s
Connecting=Up.. vseeeainnss «s+8-10
CRTL=BREAK...zosssss i 1
Control Key (CTRL)........ R
Cursor Control..... O S
D
Debugging....ceus SR EL
Deferred Mode.......... -,
Delete Key....... e e e A
DImEnSionNS .. ossennennsus S
Direct Mode......... e B 65
Directory Track.,........ O - |
Disc Cassette..... ARk « B
Disc Drive - extra..ecicevisrs £
Discs care of...... SRR ST
Disc Operating System (DOS)... 19
Disc-Storing Data...coevsveaes 24
Display.ccccassnnssnnses P |
DrawingS..creesesass N 263
E
EAAEINGass s saunsssrsnsssnsnenn #1
ENTER Key..... S e A
Error Message.......- canssinebglD
Errors...ccceas o R]
F
Filling Areas of Colour....... 280
Formatted Discs...... o e
FOR-TO-NEXT...... i e 99,10
(5
Graphics - Colour...eesss... 67,263
o T 5 Mt e e L
o LA ciavsnwininn 263
- Circles.uuecusss .
- E11ips€.iscvranns.-. 263
- PolygOMeeueon.s i B

G
Graphics - Movement...... e b
- Drawings.ssececess u it
- ShapeS...ccus A e 4
= Sprites..cesseans PR)
- lse of Symbols...... 268
H
HATOWATE . . e cssssrssss SR, i |
Hexadecimal....coonennnsss Pt -
High Level Languages....everess 13
I
Immediate Mode....ccosnsvrnnss Ayt -
Input/Qutput..ccovevorncas i i
Insert Kay...-oceaua k5 i P
J
JoystickS.eonoannes g e R
Joystick Ports......... e IR O
K
Keyboard Layout........ A NI UL 4
Keyboard Trainer Program.....)|
Keys Ancillary Function........ 29
Character..... G A . 28
User Defined Fumction..... 28
L
Language - High Level.......... 13
- Loading....... pmsatri
- Dperating Mode..... 18,19
Bl Bl i s sa s vaivain ST
Loading BASIC........ F A S 64
Logical Operators.......... savi 98
LOOPssrascuss LR RO SPTIENRP
M
Machine Code.....evussannnsnnss S0
Machine Code Programs...... e o0
Machine Code Subroutines....... 283
Machine Operating System (MOS). 18
Mathematical Operators......... 65
MO s s s ssesssissannsasssannan 19
Memory Locations and Contents.. 284
MeSSa08. ceenranas e e T
N
Numbers.cosaseasea e e T . B
Numeric Variabies.......oiess.. 85
0
Operating Systems.......eesve.- 18
Output.sieernnnnnes SRR S A
F .
Peripherals......... e A 2514
Piaal iiisveens B R R e
Program Format....... sappnnndEn hb
Program Storage in RAM......... 72
Program Structure,..... AT |
Programming Languages....c.cexs 16

Trxy

R
Random Access Memory (RAM).... 13
Read Only Memory (ROM)........ 13
DR s i i e 18
Relational Operators.........66,89
Reserved Words......ccuceeuns R
5

Saving Machine Code Programs.. 288
Saving Your Program........... 52
screen Display......... Sriyes iy
T L e e e tond
Tt R P A, A i,
aBctors = DISC...ivecnrs s T
SEOUENCE. . aviunas St T S hhegy 1
aeridl” T/ Port (RS232)....... 6
Shapes - General...... ey i g |

it T R 275

- Defining..... sanrsnsn. BIE

= Movement., . .. coccnane 274

ol | [||| e e s)

5
SIFT=BREAKcv04a v PRl
SuftwarElli-lllii-b!ii-i- ---------- -lq'
S R R L WO
SRy = PIanes, .. rsacnpsnes 277
- Magnification..... S 1
= Movement............ . £43
g e s e e O
SUerUt-‘InEEl“llii-i-lli-i-l--i--l-- 94
T g o AR . 86
SYREAX ErrDr.. ... es i asegt Liigar
System Commands.......ceuueurs ey
T
TFHEKS =" TSE. . s esnnsne Me i, ol |
u
User Defined Function Keys..... 28
¥
R T i o e R B WL a5
W
WNrite Protect Tabs......cccuse. 23

homEma Y

	front
	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39
	page40
	page41
	page42
	page43
	page44
	page45
	page46
	page47
	page48
	page49
	page50
	page51
	page52
	page53
	page55
	page56
	page57
	page58
	page59
	page61
	page62
	page63
	page64
	page65
	page66
	page67
	page68
	page69
	page70
	page71
	page72
	page73
	page74
	page75
	page76
	page77
	page78
	page79
	page80
	page81
	page82
	page83
	page84
	page85
	page86
	page87
	page88
	page89
	page90
	page91
	page92
	page93
	page94
	page95
	page96
	page97
	page98
	page99
	page100
	page102
	page103
	page104
	page105
	page106
	page107
	page108
	page109
	page110
	page111
	page112
	page113
	page114
	page115
	page116
	page117
	page118
	page119
	page120
	page121
	page122
	page123
	page124
	page125
	page126
	page127
	page128
	page129
	page130
	page131
	page132
	page133
	page134
	page136
	page137
	page138
	page139
	page140
	page141
	page142
	page143
	page144
	page145
	page146
	page147
	page148
	page149
	page150
	page151
	page152
	page153
	page154
	page155
	page156
	page157
	page158
	page159
	page160
	page161
	page162
	page163
	page164
	page165
	page166
	page167
	page168
	page169
	page170
	page171
	page172
	page173
	page174
	page175
	page176
	page177
	page178
	page179
	page180
	page181
	page182
	page183
	page184
	page185
	page186
	page187
	page188
	page189
	page190
	page191
	page192
	page193
	page194
	page195
	page196
	page197
	page198
	page199
	page200
	page201
	page202
	page203
	page204
	page205
	page206
	page207
	page208
	page209
	page210
	page211
	page212
	page213
	page214
	page215
	page216
	page217
	page218
	page219
	page220
	page221
	page222
	page223
	page224
	page225
	page226
	page227
	page228
	page229
	page230
	page231
	page232
	page233
	page234
	page235
	page236
	page237
	page238
	page239
	page240
	page241
	page242
	page243
	page244
	page245
	page246
	page247
	page248
	page249
	page250
	page251
	page252
	page253
	page254
	page255
	page256
	page257
	page258
	page259
	page260
	page261
	page262
	page263
	page264
	page265
	page266
	page267
	page268
	page269
	page270
	page271
	page272
	page273
	page274
	page275
	page276
	page277
	page278
	page279
	page280
	page281
	page282
	page283
	page284
	page285
	page286
	page287
	page288
	page289
	page290
	page291
	page292
	page293
	page294
	page295
	page296
	page297
	page298
	page299
	page300
	page301
	page302
	page303
	page304
	page305
	page306
	page307
	page308
	page309
	page310
	page311
	page312
	page313
	page314
	page315
	page316
	page317
	page318
	page319
	page320
	page321
	page322
	page323
	page324
	page325
	page326
	page327
	page328
	page329
	page330
	page331
	page332
	page333
	page334
	page335
	page336
	page337
	page338
	page339
	page340
	page341
	page342
	page343
	page344
	page345
	page346
	page347
	page348
	page349
	page350
	page351
	page352
	page353
	page354
	page355
	page356
	page357
	page358
	page359
	page360
	page361
	page362
	page363
	page364
	page365
	page366
	page367

